原标题:计算几何-两条线段是否相交(三种算法)
计算几何中,判断线段是否相交是最基本的题目。 所谓几何, 最基本的当然就是坐标, 从坐标中我们可以知道位置和方向,比如:一个点就是一个位置,两点确定一条直线,从某点指向另一点的有向线段所在的直线是一向量。要处理几何题,我们又不得不涉及到叉积和点积, 判断线段相交就要用到叉积。
下面先讲讲相交的形式:
说到线段, 我们很自然想到直线,判断两条直线是否相交只需判断它们斜率是否相等,相等就为平行或重合, 不等就相交(注:判断相交我们不采用除法,因为除法容易产生浮点误差,当两条直线斜率接近时,很容易出错。 事实上,几乎所有几何题都不建议采用除法)。
线段相交有两种形式:
规范相交和 非规范相交 。 区别就是交点是否是其中一条线段的端点,不是的是规范相交。
对于线段A,B,如果 线段A与直线B相交 ,线段B与直线A相交 ,那么就可以认为线段A 和线段B相交。
关键问题是:如何判断直线AB是否与线段CD相交呢?
设直线AB的方程为:f(x,y) = 0,直线方程可以通过两点式求得。
当C和D点不在直线的同侧时,直线AB必然与线段CD相交,也就是说直线AB与线段CD相交的条件为:f(C) * f(D) <= 0。
代码如下:
typedefstructpoint
{
floatx;
floaty;
}Poin