matlab 限定参数范围,MATLAB如何在限定参数范围时进行线性拟合

本文探讨了如何在MATLAB中进行线性拟合时限制参数范围的问题。作者提供了当前实现的代码,该代码通过三层循环遍历参数空间,寻找满足约束条件的最小二乘解,但计算效率极低。作者希望寻求优化方法以提高计算速度,对于一个五行四列的数据文件,当前方法需要约2.5小时来完成计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本人小白,想请教如何在限定参数范围的情况下进行线性拟合。

在MATLAB中,通常解一个多元超定方程组,如

A=[1,2,3;

2,3,4;

3,4,5;

4,5,6;

5,6,7];

b=[40,50,60,70,80]';

若要求Z=[z1;z2;z3];

只需Z=A\b就可以了。

但如果额外需满足约束条件,比如0.54

为了实现上述目的,本人编了一个小程序,但计算速度太慢,以至于上述测试文件(共五行四列)需要2个半小时才能计算完成,能否优化呢?

程序如下:

function yy=mindz(dz)

z1=[0.54;1.09];

z2=[0;0.90];

z3=[0.54;1.09];

num_z3=fix((z3(2,1)-z3(1,1))/dz+1);

num_z2=fix((z2(2,1)-z2(1,1))/dz+1);

num_z1=fix((z1(2,1)-z1(1,1))/dz+1);

mm_total=num_z2*(num_z1*2+1-num_z3)*num_z3/2;

hwait=waitbar(0,'请等待>>>>>>>>');

yy=zeros(1,4);

load data.txt -ASCII     %%该文件即为五行四列文件,包含了A项和b项

mm=1;

idata=1:size(data,1);

yy(1)=sum((data(idata,4)-data(idata,1).*z3(1,1)-data(idata,2).*z2(1,1)+data(idata,3).*z3(1,1)).^2);

%%原方程形如b=z1*a1+z2*a2+z3*a3,其中z1 z2 z3为要拟合的有限定范围的量。这里是在进行最小二乘计算。

yy(2)=z3(1,1);

yy(3)=z2(1,1);

yy(4)=z3(1,1);

for zz3=z3(1,1):dz:z3(2,1)

for zz1=zz3:dz:z1(2,1)

for zz2=z2(1,1):dz:z2(2,1)

yyi=sum((data(idata,4)-data(idata,1).*zz1-data(idata,2).*zz2+data(idata,3).*zz3).^2);

if yyi < yy(1)

yy(1)=yyi;

yy(2)=zz1;                        %%用于后期调用最小值的相应zz1

yy(3)=zz2;

yy(4)=zz3;

end

perstr=fix(mm/mm_total*100);

str=['正在运行中',num2str(perstr),'%'];

waitbar(mm/mm_total,hwait,str);

pause(0.05);

mm=mm+1;

end

end

end

close(hwait);

请大神赐教!不甚感激!

### 使用MATLAB进行曲线拟合参数优化 在MATLAB中,可以利用内置函数和工具箱来执行复杂的曲线拟合以及参数优化操作。对于线性回归、多项式拟合等问题,可以直接调用`polyfit`等简单命令;而对于更复杂的非线性情况,则推荐使用Curve Fitting Toolbox中的专用函数或Optimization Toolbox来进行求解。 #### 非线性最小二乘法拟合实例 当面对非线性的关系,通常采用非线性最小二乘算法寻找最佳匹配的模型参数。下面给出一段基于此原理编写的小程序片段作为示范: ```matlab % 定义目标方程形式及其初始猜测值 fun = @(p,xdata)p(1)*exp(-p(2).*xdata)+p(3); initialGuesses = [5; -1; 2]; % 调用lsqcurvefit()完成实际拟合过程 [p,resnorm,~,exitflag,output] = lsqcurvefit(fun,... initialGuesses,... % 初始估计向量 xData,... % 自变量数据集 yData); % 应变量观测值集合 if exitflag > 0 fprintf('成功找到局部最优解\n'); else warning('未能收敛到满意的结果') end disp(['残差平方和:', num2str(resnorm)]); disp(output); % 绘制原始散点图与拟合后的曲线对比图像 figure; plot(xData,yData,'o'); hold on; xfit = linspace(min(xData),max(xData)); yfit = fun(p,xfit); plot(xfit,yfit,'r-','LineWidth',2); legend('测量数据','拟合结果'); xlabel('X轴标签'), ylabel('Y轴标签'); title('非线性最小二乘法拟合效果展示'); ``` 上述代码展示了如何定义自定义的目标函数,并通过提供合理的初值范围让优化器尝试逼近真实参数的过程[^1]。这里选择了`lsqcurvefit()`这个特别适合解决连续型问题的函数,在给定输入输出样本的基础上自动调整内部权重直至满足预设精度条件为止。 此外,还可以考虑引入额外约束条件进一步限定可行域内的搜索空间,提高最终获得全局极小的可能性。具体做法是在调用`lsqcurvefit()`之前指定上下限边界lb和ub两个数组即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值