python协程库,高性能python编程之协程(stackless)

我们都知道并发(不是并行)编程目前有四种方式,多进程,多线程,异步,和协程。

多进程编程在python中有类似C的os.fork,当然还有更高层封装的multiprocessing标准库,在之前写过的python高可用程序设计方法http://www.cnblogs.com/hymenz/p/3488837.html中提供了类似nginx中master process和worker process间信号处理的方式,保证了业务进程的退出可以被主进程感知。

多线程编程python中有Thread和threading,在linux下所谓的线程,实际上是LWP轻量级进程,其在内核中具有和进程相同的调度方式,有关LWP,COW(写时拷贝),fork,vfork,clone等的资料较多,这里不再赘述。

异步在linux下主要有三种实现select,poll,epoll,关于异步不是本文的重点。

说协程肯定要说yield,我们先来看一个例子:#coding=utf-8

import time

import sys

# 生产者

def produce(l):

i=0

while 1:

if i < 5:

l.append(i)

yield i

i=i+1

time.sleep(1)

else:

return

# 消费者

def consume(l):

p = produce(l)

while 1:

try:

p.next()

while len(l) > 0:

print l.pop()

except StopIteration:

sys.exit(0)

l = []

consume(l)

在上面的例子中,当程序执行到produce的yield i时,返回了一个generator,当我们在custom中调用p.next(),程序又返回到produce的yield i继续执行,这样l中又append了元素,然后我们print l.pop(),直到p.next()引发了StopIteration异常。

通过上面的例子我们看到协程的调度对于内核来说是不可见的,协程间是协同调度的,这使得并发量在上万的时候,协程的性能是远高于线程的。import stackless

import urllib2

def output():

while 1:

url=chan.receive()

print url

f=urllib2.urlopen(url)

#print f.read()

print stackless.getcurrent()

def input():

f=open('url.txt')

l=f.readlines()

for i in l:

chan.send(i)

chan=stackless.channel()

[stackless.tasklet(output)() for i in xrange(10)]

stackless.tasklet(input)()

stackless.run()

关于协程,可以参考greenlet,stackless,gevent,eventlet等的实现。 本条技术文章来源于互联网,如果无意侵犯您的权益请点击此处反馈版权投诉 本文系统来源:php中文网

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值