feather_cui
码龄7年
关注
提问 私信
  • 博客:24,322
    24,322
    总访问量
  • 4
    原创
  • 2,283,723
    排名
  • 6
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2018-05-25
博客简介:

weixin_42310668的博客

查看详细资料
个人成就
  • 获得14次点赞
  • 内容获得10次评论
  • 获得123次收藏
  • 代码片获得866次分享
创作历程
  • 3篇
    2020年
  • 1篇
    2019年
成就勋章
TA的专栏
  • NLP
    1篇
  • 技术成长
  • DL
  • ML
  • Python
  • 工程化
    2篇
兴趣领域 设置
  • 大数据
    flink
  • 人工智能
    机器学习深度学习自然语言处理tensorflowpytorchnlp数据分析
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

fastText代码实战篇——手把手教你使用fastText实现文本分类

前言上一篇文章中,我们对fastText的原理进行了介绍,fastText原理篇,接下来我们进行代码实战,本文中使用fastText对新闻文本数据进行文本分类。fasttext是facebook开源的一个词向量与文本分类工具,在学术上没有太多创新点,好处是模型简单,训练速度非常快。简单尝试可以发现,用起来还是非常顺手的,做出来的结果也不错,可以达到上线使用的标准。简单说来,fastText做的事情,就是把文档中所有词通过lookup table变成向量,取平均之后直接用线性分类器得到分类结果。f
原创
发布博客 2020.06.09 ·
8822 阅读 ·
10 点赞 ·
10 评论 ·
74 收藏

fastText原理篇

fastText是Facebook AI Research在16年开源的一个文本分类器。 其特点就是fast,可以作为文本分类的baseline模型。相对于其它文本分类模型,如SVM,Logistic Regression和neural network等模型,fastText在保持分类效果的同时,大大缩短了训练时间。fastTest基本结构fastText优势适合大型数据+高效的训练速度:能够训练模型“在使用标准多核CPU的情况下10分钟内处理超过10亿个词汇”,特别是与深度模型对比,fas
原创
发布博客 2020.06.08 ·
1991 阅读 ·
2 点赞 ·
0 评论 ·
15 收藏

mac下CSV文件编码格式查看与转换

mac 安装brewruby -e"$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"enca 简介enca是Linux下的文件编码转换工具。安装encabrew install enca查看文件编码enca -L zh_CN filename//或enca file...
原创
发布博客 2020.01.15 ·
8092 阅读 ·
1 点赞 ·
0 评论 ·
11 收藏

手把手教程--Linux服务器-flask部署深度学习模型

1.首先本地构建DL模型根据自己的实际业务场景构建ML、DL模型,训练模型,并保存自己需要的模型,这里就不用过多赘述了。2.本地跑通mac-将题目分类模型转换为Web应用程序在原本的项目文件夹中新增如下几个文件:app.pytemplates /home.htmlresult.htmlstatic/style.css如图:子目录templates是Flask在Web浏览...
原创
发布博客 2019.06.03 ·
5041 阅读 ·
1 点赞 ·
0 评论 ·
24 收藏