铁路计算机联锁实训,电气化铁路信号计算机联锁实训系统研究与设计

摘要:

随着中国铁路基础设施建设的大力推进,对铁路行车安全提出了更高的要求.计算机联锁作为保障行车安全的关键设备,在铁路系统现代化的进程中有着广阔的发展前景.通过研究铁路信号设备的联锁关系及计算机联锁系统的结构特点和层次关系,引入沙盘设备,开发符合实际需要的计算机联锁实训系统,对于铁路相关专业的岗前培训和改善教学质量有着重要的意义.通过研究计算机联锁系统的整体功能需求,着重对计算机联锁操作系统和硬件电路进行设计.在软件设计部分,通过UML建模,构建类并分析类之间的关系,确定需要创建的对象及其属性和操作;在软件的开发过程中,以Visual Studio作为开发环境,摒弃传统的MFC框架,采用更为轻便的Qt图形框架作为开发工具,用C++面向对象的思想进行编程;根据站场平面布置图,进路联锁表和各对象的存储数据,最终实现对操作界面的开发.在硬件设计部分,首先搭建沙盘,布置信号设备,完成车站的整体布局;然后利用Altium Designer软件设计电路,完成对信号设备的控制,主要包括:转辙机继电控制模块,道岔监测模块,信号机控制模块,轨道电路监测模块;最后定义串口通信协议,上位机向下位机发送指令,沙盘设备进行动作并反馈动作结果,最终完成整个实训系统的设计.计算机联锁实训系统不仅能实现对计算机联锁系统的操作,还能实现对信号机,道岔,转辙机,轨道电路的控制,使沙盘运作起来,具有非常深刻的教学意义.该实训系统的应用场景非常广阔,可以用于铁路职工岗前培训,铁路相关专业的教学模拟和在校生校内实习等场景,能够显著提高教师的教学效率和学员的专业技能.

展开

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值