nag matlab工具箱 f8kd,清华大学高等数值计算(李津)实践题目二(SVD计算及图像压缩)(包含matlab代码)...

本文深入探讨奇异值分解(SVD)的概念,介绍了SVD的基本定理及其在矩阵二对角化过程中的应用。通过传统SVD算法,详细阐述了如何通过正交矩阵和对称QR迭代来求解奇异值,并解释了在迭代过程中如何判断奇异值的近似零值。此外,还讨论了在实际计算中如何处理这些奇异值问题。
摘要由CSDN通过智能技术生成

第1部分 方法介绍

奇异值分解(SVD )定理:

设m n A R ?∈,则存在正交矩阵m m V R ?∈和n n U R ?∈,使得

T

O A V U O O ∑??=??

??

其中12(,,

,)r diag σσσ∑=,而且120r σσσ≥≥≥>,(1,2,

,)i i r σ=称为A 的

奇异值,V 的第i 列称为A 的左奇异向量,U 的第i 列称为A 的右奇异向量。

注:不失一般性,可以假设m n ≥,(对于m n

方法1:传统的SVD 算法

主要思想:

设()m n A R m n ?∈≥,先将A 二对角化,即构造正交矩阵1U 和1V 使得

110T B n U AV m n ??

=??

-??

其中1200n n B δγγδ???

???=??????

然后,对三角矩阵T T B B =进行带Wilkinson 位移的对称QR 迭代得到:T B P BQ =。

当某个0i γ=时,B 具有形状12B O B O B ??

=?

???

,此时可以将B 的奇异值问题分解为两个低阶二对角阵的奇异值分解问题;而当某个0i δ=时,可以适当选取'Given s 变换,使得第i 行元素全为零的二对角阵,因此,此时也可以将B 约化为两个低

阶二对角阵的奇异值分解问题。

在实际计算时,当i B δε∞≤或者()

1j j j γεδδ-≤+(这里ε是一个略大于机器精度的正数)时,就将i δ或者i γ视作零,就可以将B 分解为两个低阶二对角阵的奇异值分解问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值