赵子的博客

靡不有初鲜克有终

LeetCodeContest week140

主要是引用第一名(python),第二名(python)和第五名(java)的代码 1.Occurrences After Bigram Given words first and second, consider occurrences in some text of the form “fir...

2019-06-10 23:34:33

阅读数 23

评论数 0

kaggle教程--房屋价格预测代码

https://www.kaggle.com/c/home-data-for-ml-course import pandas as pd TRAIN_PATH = '/opt/work/jupyter/data/kaggle/house_price/train.csv' TEST_PATH = '...

2019-06-10 23:32:17

阅读数 69

评论数 0

kaggle教程--Intermediate Machine Learning

包括以下 tackle data types often found in real-world datasets (missing values, categorical variables), design pipelines to improve the quality of your m...

2019-06-05 00:02:29

阅读数 43

评论数 0

kaggle教程--Introduction to ML

Using Pandas to Get Familiar With Your Data The first step in any machine learning project is familiarize yourself with the data. You’ll use the Pand...

2019-06-04 08:54:06

阅读数 69

评论数 0

使用find_in_set代替in,设置mysql的in参数

问题,出数据报表时,经常需要设置一个参数,根据该参数执行多个sql,计算整体数据。当这个参数里面是多个时,就没法用IN来进行操作了。看了很多博客,按照sql执行也没成功。最后看到一个find_in_set(str, strlist)的方法,试了下,完美解决; -- 表person,字段(id,na...

2019-05-31 11:22:32

阅读数 195

评论数 0

Titanic数据分析(部分)

Titanic 文章来源:https://www.kaggle.com/ldfreeman3/a-data-science-framework-to-achieve-99-accuracy Machine Learning的hello world How a Data Scientist Beat...

2019-05-23 02:49:45

阅读数 55

评论数 0

机器学习一些笔记

1.何时使用机器学习 大量数据的复杂任务,且无结构数据 --> 自动化 问题定义:输出和输入是什么 数据:足够多的数据,具有特征和标签(如果监督学习) 数据中的规律:必须是有模式可寻的数据 特征:ml一般作用在数字上,好的特征=成功一半 如何评价:有评价标准 2.如何开始 问一...

2019-05-20 01:43:25

阅读数 10

评论数 0

读书笔记-统计学习方法-ch01

1.1 统计学习 对象 统计学习的对象是数据。 统计学习关于数据的基本假设是同类数据具有一定的统计规律性,这是统计学习的前提。 本书以讨论离散变量为主。 目的 统计学习用于对数据进行预测和分析,特别是对未知新数据进行预测和分析。 方法 统计学习有监督学习、非监督学习、半监督学习和强化学习等组成。本...

2019-04-24 00:20:07

阅读数 4

评论数 0

读书笔记-统计学习方法-ch01

1.1 统计学习 对象 统计学习的对象是数据。 统计学习关于数据的基本假设是同类数据具有一定的统计规律性,这是统计学习的前提。 本书以讨论离散变量为主。 目的 统计学习用于对数据进行预测和分析,特别是对未知新数据进行预测和分析。 方法 统计学习有监督学习、非监督学习、半监督学习和强化学习等组成。本...

2019-04-24 00:17:46

阅读数 8

评论数 0

朴素贝叶斯法(统计学习方法四)

朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。对于给定的训练数据集,首先基于特征条件独立假设学习输入输出的联合概率分布;然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率最大的输出y。 1.朴素贝叶斯法的学习与分类 1.1基本方法 设输入空间是χ⊆Rn\chi\subseteq...

2019-04-08 03:02:24

阅读数 12

评论数 0

sklearn中的决策树

参数 DecisionTreeRegressor(criterion=’mse’, splitter=’best’, max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max...

2019-04-08 01:07:51

阅读数 36

评论数 0

概率论之数理统计的概念

1.数理统计 “统计学”一词的英文statistics 源于拉丁文的status(国家),意思为国情资料的收集或国情学,一般地说,数理统计这一学科的研究对象是带随机性的教据,很容易把数理统计与一大堆数据和图表联系起来,但这仅仅是数据的初级处理。数据初级处理阶段的统计称之为描述性统计.描述性统计充满...

2019-04-07 10:21:29

阅读数 15

评论数 0

概率论之大数定律和中心极限定理

1.大数定律 教材说这是概率论最精彩的一章。。。,我觉得说的不错。。。,感觉需要吃透这几个定理。 1.1切比雪夫不等式 设随机变量XXX的均值EXEXEX及方差DXDXDX存在,则对于任意正数ε\varepsilonε,有不等式 P{∣X−EX∣≥ε}≤DXε2P\{|X-EX|\ge\varep...

2019-04-06 02:38:55

阅读数 103

评论数 0

概率论之随机变量的数字特征

1.数学期望 1.1离散型随机变量的期望 设离散型随机变量XXX的分布律为 XXX x1x_1x1​ x2x_2x2​ ......... xnx_nxn​ ......... PPP p1p_1p1​ p2p_2p2​ ......... pnp_npn​ ......... ...

2019-04-05 20:39:38

阅读数 38

评论数 0

概率论之多元随机变量及其分布

1.多元随机变量 在实际问题中,有一些实验的结果需要同时用两个或两个以上的随机变量来描述。 设n元随机变量X(ω)=(X1(ω),X2(ω),...,Xn(ω)),简记为X=(X1,X2,...,Xn)X(\omega)=(X_1(\omega),X_2(\omega),...,X_n(\omeg...

2019-04-05 02:10:25

阅读数 118

评论数 0

概率论 基础(一)

1.条件概率 设A、B是两个事件,且P(A)>0A、B是两个事件,且P(A)>0A、B是两个事件,且P(A)>0,称P(B∣A)=P(AB)P(A)P(B|A)=\frac{P(AB)}{P(A)}P(B∣A)=P(A)P(AB)​ 为在事...

2019-04-05 01:40:06

阅读数 42

评论数 0

概率论之贝叶斯统计

在极大似然估计和矩估计中,我们都将待估参数θ\thetaθ视为参数空间Θ\ThetaΘ的一个未知常数(或常向量),我们坚信这些参数的信息只是由样本携带,于是通过对样本“毫无偏见”的加工,得到参数估计,而后按照判别好坏的标准对估计量进行分析,但事实上,参数θ\thetaθ本身就是一个随机变量。 既然...

2019-04-03 23:46:24

阅读数 21

评论数 0

概率论之极大似然估计

统计的基本任务是以样本推断总体,在很多场合下,总体分布的形式是已知的,需要求得未知参数,这就是数理统计的参数估计问题。参数估计分为两种:一种是点估计,一种是区间估计。前者是用一个适当的统计量作为参数的近似,我们将统计量的样本值称为该参数的估计值;后者是用统计量两个值所界定的区间来指出真实参数值的大...

2019-04-03 02:19:21

阅读数 67

评论数 0

链表的环的入口 LeetCode142 Linked List Cycle II

LeetCode原题: Given a linked list, return the node where the cycle begins. If there is no cycle, return null. To represent a cycle in the given linked...

2019-04-03 01:34:15

阅读数 7

评论数 0

机器学习之决策树(三)

1.决策树 决策树是一种常见的 机器学习算法,可以用于分类任务,(也有回归的),且模型具有良好的可解释性,基本流程遵循简单且直观的“分而治之”的策略,其算法如下: 输入:训练集D=(x1,y1),(x2,y2),...,(xm,ym)D={(x_1,y_1),(x_2,y_2),...,(x_m...

2019-04-02 00:17:05

阅读数 14

评论数 0

提示
确定要删除当前文章?
取消 删除