浮点数在计算机中的存储
十进制浮点数格式:
浮点数格式使用科学计数法表示实数。科学计数法把数字表示为系数(coefficient)(也称为尾数(mantissa)),和指数 (exponent)两部分。比如 3.684*10^2. 在十进制中,指数的基数为 10,并且表示小数点移动多少位以生成系数。每次小数点向前移动时,指数就递增;每次小数点向后移动时,指数就递减。例如,25.92 可表示为 2.592 * 10^1,其中 2.592 是系数,值 10^1 是指数。必须把系数和指数相乘,才能得到原始的实数。另外,如 0.00172 可表示为 1.72*10^-3,数字 1.72 必须和 10^-3 相乘才能获得原始值。 二进制浮点格式:
计算机系统使用二进制浮点数,这种格式使用二进制科学计数法的格式表示数值。数字按照二进制格式表示,那么系数和指数都是基于二进制的,而不是十进制,例如 1.0101*2^2. 在十进制里,像 0.159 这样的值,表示的是 0 + (1/10) + (5/100) + (9/1000)。相同的原则也适用二进制。比如,1.0101 乘以 2^2 后,生成二进制值 101.01 ,这个值表示二进制整数 5,加上分数 (0/2) + (1/4) 。这生成十进制值 5.25 。下表列出几个二进制
编写二进制浮点值时,二进制通常被规格化了。这个操作把小数点移动到最左侧的数位,并且修改指针进行补偿。例如 1101.011 变成 1.101011*2^3
浮点数的存储
IEEE 标准754 浮点数标准使用 3 个成分把实数定义为二进制浮点值: 符号
有效数字