遗传算法与遗传退火算法详解:编程、工具箱及应用实践

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:遗传算法和遗传退火算法是基于自然选择和进化原理的优化计算方法。本资料包深入探讨了这两种算法的概念、编程技巧,以及在Matlab环境下的操作流程。遗传算法涉及编码、选择、交叉和变异等步骤,而遗传退火算法则通过控制温度参数来避免早熟收敛。学习本资源包,你将掌握如何编写算法源代码,使用工具箱高效实现算法,并了解其在工程、机器学习等领域的应用案例,从而提升解决实际问题的能力。 遗传算法+遗传退火算法(算法简介+编程技巧+工具箱+应用大全)(含源代码)

1. 遗传算法基本概念与实现技巧

遗传算法(Genetic Algorithms,GA)是一种模拟自然选择和遗传学机制的搜索算法,它被广泛应用于优化和搜索问题中。在本章中,我们将探索遗传算法的理论基础,核心操作过程,以及在高级应用中的优化技巧。

1.1 遗传算法的理论基础

1.1.1 什么是遗传算法

遗传算法是启发式搜索算法,受到达尔文的生物进化论启发。它通过模拟自然选择的过程来迭代地改进解。在每一次迭代中,算法通过选择、交叉和变异等操作生成新的种群,从而逼近问题的最优解。

1.1.2 遗传算法的起源与发展

遗传算法由美国计算机科学家约翰·霍兰德在20世纪70年代初提出,并逐渐发展成为一个独立的学科领域。多年来,遗传算法在理论研究和实际应用中都有了显著的发展和突破。

1.1.3 遗传算法的主要组成要素

一个典型的遗传算法包括以下要素:编码方案、初始种群、选择机制、交叉操作、变异操作、适应度函数和终止条件。这些要素共同决定了遗传算法的搜索效率和解的质量。

接下来,我们将深入探讨遗传算法的核心操作过程。

2. 遗传退火算法基本概念与实现技巧

2.1 遗传退火算法的理论基础

遗传退火算法是一种结合了遗传算法与模拟退火算法的优化方法。它利用遗传算法的种群进化机制和模拟退火算法的概率跳变特性来提高算法的全局搜索能力和避免陷入局部最优。

2.1.1 遗传退火算法的定义

遗传退火算法(Genetic Simulated Annealing, GSA)是一种在遗传算法基础上引入了“退火”操作的改进算法。它通过模拟退火过程中的冷却步骤来控制种群的进化,使得算法在探索解空间时能以一定的概率接受较差的解,从而有机会跳出局部最优,寻找到全局最优解。

2.1.2 遗传退火算法的引入背景

在遗传算法中,随着进化代数的增加,种群多样性的减少容易导致早熟收敛。引入模拟退火的思想是为了增强算法的全局搜索能力。在算法初期,接受差解的概率较高,允许种群在较大的范围内探索;随着算法的进行,接受差解的概率逐渐降低,使得算法逐渐稳定并收敛到较好的解。

2.1.3 遗传退火算法与其他算法的比较

与其他优化算法相比,遗传退火算法具有以下优势: - 全局搜索能力 :遗传退火算法继承了遗传算法的全局搜索特性,通过种群的多样性保证了搜索的广度。 - 跳出局部最优 :模拟退火的“退火”机制提供了一种跳出局部最优的可能性,增加了算法的鲁棒性。 - 参数调节的灵活性 :该算法中有较多的参数需要调整,但正是这种灵活性使得算法可以针对具体问题进行优化。

2.2 遗传退火算法的关键技术

2.2.1 退火策略的引入与调整

退火策略的核心在于冷却计划的设计。冷却计划决定了算法从“热”到“冷”的过程,影响着算法的收敛速度和最终质量。通常,冷却计划可以表示为:[ T_{k+1} = \alpha \times T_k ],其中 (T_k) 是第 (k) 代的温度参数, (\alpha) 是冷却率,(0 < \alpha < 1)。

2.2.2 温度参数与冷却计划的设计

温度参数 (T) 的设计是退火策略中的关键。温度高时,算法以较高的概率接受差解,随着温度的逐渐降低,算法对差解的接受概率减少,趋于寻找更优解。冷却计划的设计通常需要依据问题的特点进行试验调整。

% Matlab 示例:模拟退火的冷却计划设计
initial_temp = 100; % 初始温度
final_temp = 1e-3; % 最终温度
alpha = 0.9; % 冷却率
T = initial_temp;
while T > final_temp
    T = alpha * T;
    % 执行当前温度下的算法步骤
end
2.2.3 遗传退火算法的全局搜索能力

在遗传退火算法中,全局搜索能力由遗传操作(如交叉、变异)和退火过程共同决定。通过合理设计交叉和变异策略以及冷却计划,可以使得算法在保证全局搜索能力的同时,避免过度的随机性导致的效率低下。

2.3 遗传退火算法的优化与应用

2.3.1 遗传退火算法的收敛性分析

收敛性分析是评估遗传退火算法性能的重要方面。通常,收敛性分析会涉及概率论和统计学的知识,分析在不同温度参数下的状态转移概率。

2.3.2 遗传退火算法的参数自适应调整

参数自适应调整是指在算法的执行过程中动态地调整参数,以适应当前搜索状态。例如,可以基于当前种群的适应度分布来调整接受差解的概率或者改变冷却率。

2.3.3 面向特定问题的算法定制

针对特定的问题,遗传退火算法可能需要特定的定制。例如,在处理特定类型的优化问题时,可能需要设计特定的交叉、变异操作,或者制定特殊的退火策略来获得更好的优化效果。

遗传退火算法因其对参数敏感和算法复杂性,在实际应用中需要综合考虑问题的特性以及算法本身的性能,通过不断试验和调整,找到最佳的算法配置。在接下来的章节中,我们将具体探讨遗传退火算法在Matlab环境下的实现,以及如何针对具体问题进行编程与操作。

3. Matlab中GA和GAA的编程与操作

3.1 Matlab环境下的遗传算法实现

3.1.1 Matlab遗传算法工具箱介绍

Matlab提供了一个强大的遗传算法工具箱,即GA(Genetic Algorithm)工具箱,它允许用户自定义适应度函数,设置遗传算法参数,并执行优化任务。该工具箱包含了一系列的函数和图形用户界面,方便用户在直观的环境中解决问题。它的主要特点包括:

  • 适应度函数的灵活定义
  • 多种遗传操作算子的支持
  • 并行计算和多平台支持
  • 内置的参数自适应机制
  • 丰富的参数设置选项

利用Matlab的GA工具箱,开发者可以在相对较少的代码量下实现复杂的遗传算法,极大地方便了算法的研究和应用。

3.1.2 编写适应度函数的Matlab代码

适应度函数是遗传算法中最核心的组件,它定义了个体的适应程度,影响着选择过程。在Matlab中编写适应度函数相对简单,下面是一个简单的适应度函数示例:

function f = myFitnessFunction(x)
    % 这里假设x是一个行向量,代表解决方案的参数
    % 适应度函数计算的是x的负平方和
    f = -(sum(x.^2));
end

适应度函数应该总是返回一个数值,该值反映了个体适应环境的能力。在这个例子中,我们用向量的负平方和作为适应度评分,向量元素越小,个体的适应度越高。

3.1.3 遗传算法参数的设置与调试

设置正确的参数对于遗传算法的成功至关重要。Matlab GA工具箱允许用户对多种参数进行配置,以下是一些关键参数及其作用:

  • PopulationSize :种群大小
  • MaxGenerations :最大迭代次数
  • CrossoverFraction :交叉率
  • MutationRate :变异率

通过调整这些参数,我们可以控制算法的探索与开发平衡。例如,增加种群大小可以提高全局搜索能力,而增加交叉率则有助于信息的共享。

% 参数设置示例
options = optimoptions('ga', ...
    'PopulationSize', 100, ...
    'MaxGenerations', 500, ...
    'CrossoverFraction', 0.8, ...
    'MutationRate', 0.01, ...
    'PlotFcn', @gaplotbestf);

以上代码使用 optimoptions 函数设置遗传算法参数,并使用 gaplotbestf 函数指定了绘图函数,以图形方式跟踪算法的收敛过程。

3.2 Matlab环境下的遗传退火算法实现

3.2.1 Matlab遗传退火算法工具箱介绍

遗传退火算法(Genetic Annealing Algorithm, GAA)是遗传算法的一个变种,它引入了模拟退火的思想,通过温度控制参数来在搜索空间内进行有效的全局搜索。Matlab中虽然没有直接的GAA工具箱,但我们可以通过修改GA工具箱的相关函数来实现GAA。

3.2.2 实现遗传退火算法的Matlab代码

实现GAA的关键在于设计一个递减的温度计划,并在每一代中根据当前温度调整变异概率。以下是实现GAA的Matlab代码片段:

function [state, options, optchanged] = gaanneal(options, state, flag)
    % 根据当前温度调整变异率
    if flag == 'init' || flag == 'iter'
        temp = state.Score - options.Temperature;
        options.MutationRate = 1 / (1 + exp(temp));
    end
    % 其他代码保持不变
end

在这段代码中,我们根据当前适应度与温度值之间的差异来调整变异率。这样,在算法的早期,较高的温度允许更大的搜索空间,而随着算法的进行,温度逐渐降低,变异率也相应减小,从而逐渐专注于搜索解空间的最佳区域。

3.2.3 遗传退火算法的性能测试

为了测试GAA的性能,我们可以使用Matlab的标准测试函数,比如Rastrigin函数或Sphere函数。通过比较不同参数设置下GAA的搜索效率和解的质量,我们可以评估算法的性能。

% 定义Rastrigin测试函数
rastrigin = @(x) 10*length(x) + sum(x.^2 - 10*cos(2*pi*x));

% 设置GAA参数
options = optimoptions('ga', ...
    'PopulationType', 'bitstring', ...
    'PopulationSize', 100, ...
    'MaxGenerations', 200, ...
    'CrossoverFraction', 0.8, ...
    'MutationRate', 0.01, ...
    'AnnealingFunction', gaanneal);
% 运行GAA
[x, fval] = ga(rastrigin, 20, [], [], [], [], [], [], [], options);

以上代码定义了Rastrigin测试函数,并设置了GAA的相关参数,然后调用 ga 函数执行遗传退火算法。最后,输出算法找到的最优解和其对应的适应度值。

3.3 Matlab编程技巧与案例分析

3.3.1 优化Matlab代码效率的方法

在Matlab中进行遗传算法编程时,代码效率的优化至关重要。以下是一些常见的优化方法:

  • 向量化操作:尽量减少循环,使用向量化的函数进行矩阵和数组操作。
  • 内存管理:预分配内存空间,减少内存重新分配。
  • 利用函数句柄:在需要重复执行同一操作时,使用函数句柄减少代码量。
  • 使用并行计算:利用Matlab的并行工具箱,加速代码运行。

3.3.2 案例分析:Matlab在复杂问题中的应用

Matlab在复杂问题中应用的一个实例是多目标优化问题,如同时优化车辆的燃油效率和成本。Matlab GA工具箱允许用户为每个目标函数指定权重,或者使用Pareto优化方法。

3.3.3 算法参数调整的经验分享

在实际应用中,参数调整往往需要根据具体问题进行。以下是一些经验分享:

  • 经验参数:对于初学者,可以从文献或经验中获取一些经验参数,然后根据问题调整。
  • 自适应参数:一些高级算法允许自适应调整参数,如适应度比例选择等。
  • 交叉和变异策略:合理选择交叉和变异操作的类型和概率,对于算法性能有很大影响。
  • 实验和调试:通过多次实验,记录结果,并分析参数对算法性能的影响。

通过实际案例分析和经验分享,读者可以学习到如何根据具体问题设置和调整遗传算法的参数,以及如何利用Matlab工具箱进行高效的算法实现。

4. 遗传算法和遗传退火算法的应用案例

4.1 工程优化问题中的应用

4.1.1 结构优化问题的遗传算法应用

在工程领域,结构优化问题通常涉及到寻找最优的材料分布、尺寸或形状,以实现结构在特定约束条件下的性能最优化。遗传算法(GA)在这一领域的应用表现出了其在大规模搜索空间中寻找全局最优解的能力。

问题定义

结构优化问题可以定义为:

  • 目标函数 :通常是最小化结构的质量或成本,最大化结构的强度或稳定性等。
  • 设计变量 :可以是材料的分布、结构尺寸、形状参数等。
  • 约束条件 :可能包括应力、应变、位移的限制,以及制造和材料的约束。
遗传算法的应用步骤
  1. 编码方案 :选择合适的数据结构来表示设计变量,例如使用二进制字符串或者实数编码。
  2. 初始种群 :随机生成一组设计变量组合,构成初始种群。
  3. 适应度评估 :对每个个体进行结构分析,计算出结构性能指标,并据此评估适应度。
  4. 选择与交叉 :根据适应度进行选择,然后进行交叉操作产生新的后代。
  5. 变异操作 :以小概率改变某些个体的编码,以维持种群的多样性。
  6. 替代策略 :决定新一代的种群由哪些个体组成,可能涉及精英保留策略。
示例代码
% 假设适应度函数已经定义好
fitness_function = @(x) -evaluate_structure(x);

% 初始化遗传算法参数
nvars = 10; % 设计变量的数量
lb = zeros(1, nvars); % 变量下界
ub = ones(1, nvars); % 变量上界

% 设置遗传算法选项
options = optimoptions('ga', 'PopulationSize', 100, ...
                       'MaxGenerations', 200, ...
                       'EliteCount', 2, ...
                       'CrossoverFraction', 0.8, ...
                       'MutationRate', 0.01, ...
                       'PopulationType', 'bitstring', ...
                       'MaxStallGenerations', 100, ...
                       'Display', 'iter');

% 运行遗传算法
[x, fval] = ga(fitness_function, nvars, [], [], [], [], lb, ub, ...
              [], options);

% 输出最优结构设计
disp(['最优适应度值:', num2str(-fval)]);
disp(['对应的设计变量:', num2str(x)]);
参数说明
  • nvars 是设计变量的数量,也就是结构参数的维度。
  • lb ub 分别代表设计变量的下界和上界,这是由实际工程问题决定的。
  • options 中定义了遗传算法的各种参数,如种群大小、最大迭代次数、精英策略等。

适应度函数通常是最小化函数,但 ga 函数默认求最大值,因此可能需要对适应度函数取负值。

逻辑分析

在上述代码中,我们使用了 Matlab 的遗传算法工具箱来解决结构优化问题。这个问题通常有多个局部最优解,遗传算法通过模拟自然选择的机制,能够有效地找到全局最优解。

在Matlab中, ga 函数自动执行了选择、交叉、变异等操作。适应度函数定义了遗传算法寻找最优解的目标。对于结构优化问题来说, evaluate_structure 函数是核心部分,它将设计变量映射到结构性能指标,并对这些指标进行评估,以确定适应度。

4.1.2 调度问题的遗传退火算法解决方案

调度问题涉及为一组任务分配资源,并确定任务的执行顺序。遗传退火算法(GAA)结合了遗传算法的全局搜索能力和模拟退火算法的局部搜索能力,适合解决复杂的调度问题。

问题定义

调度问题的目标通常是:

  • 最小化完成时间 :使所有任务的完成时间尽可能短。
  • 最小化延迟 :减少任务的延迟时间。
  • 最大化效率 :提高资源的使用效率。

设计变量可能包括任务的执行顺序、资源的分配等。

遗传退火算法的应用步骤
  1. 编码方案 :将任务的执行顺序编码成染色体。
  2. 初始种群 :随机生成一系列的执行顺序作为初始种群。
  3. 适应度评估 :计算每个执行顺序对应的调度目标函数值。
  4. 选择与交叉 :遗传算法的选择和交叉操作产生新的子代。
  5. 变异操作 :以一定的概率对子代进行局部调整,增加种群多样性。
  6. 退火策略 :根据温度参数决定是否接受新的子代。
示例代码
% 假设适应度函数已经定义好
fitness_function = @(schedule) -evaluate_schedule(schedule);

% 初始化遗传退火算法参数
njobs = 20; % 假设有20个任务
popsize = 100; % 种群大小
temp = 10000; % 初始温度
cool_rate = 0.99; % 冷却率

% 生成初始种群
population = generate_initial_population(njobs, popsize);

% 仿真运行遗传退火算法
for gen = 1:100
    % 交叉与变异
    new_population = crossover_and_mutation(population);
    % 计算适应度
    fitness = arrayfun(fitness_function, new_population);
    % 模拟退火接受准则
    new_population = simulated_annealing_acceptance(population, new_population, fitness, temp);
    % 更新种群
    population = new_population;
    % 更新温度
    temp = temp * cool_rate;
end

% 输出最优调度方案
[best_fitness, best_index] = max(fitness);
best_schedule = population(best_index, :);
disp(['最优调度方案适应度:', num2str(-best_fitness)]);
disp(['对应的调度方案:', num2str(best_schedule)]);
参数说明
  • njobs 是任务的数量。
  • popsize 是种群大小。
  • temp 是初始温度,用于模拟退火过程。
  • cool_rate 是温度的冷却率。
逻辑分析

上述代码展示了遗传退火算法在调度问题中的应用。在每一代的进化过程中,算法通过交叉和变异产生新的个体,并利用模拟退火接受准则决定是否接受新的个体。随着温度的逐渐降低,算法逐渐从随机搜索转向对当前已知最优解的局部搜索,最终收敛至一个较好的解。

在工程实践中,调度问题的解决通常需要考虑多方面的约束条件,如任务的依赖关系、资源的可用性等。适应度函数 evaluate_schedule 的设计需要能够准确地反映这些约束条件对调度性能的影响。

4.1.3 系统可靠性评估的算法应用

系统可靠性评估是评估系统在预定时间内无故障运行的能力。遗传算法和遗传退火算法可以应用于系统可靠性设计的优化,例如通过确定各组件的最优冗余水平来提高整体系统的可靠性。

问题定义

系统可靠性问题的目标是:

  • 最大化系统可靠性 :在给定成本、重量或体积的约束下,通过选择或设计组件的冗余水平来最大化系统整体的可靠性。
  • 最小化系统成本 :在保持系统可靠性目标不变的情况下,最小化系统的总成本。

设计变量是各组件的冗余水平或选择。

遗传算法的应用步骤
  1. 编码方案 :对系统的组件冗余水平进行编码。
  2. 初始种群 :随机生成一系列冗余水平组合,作为初始种群。
  3. 适应度评估 :根据可靠性模型计算系统的可靠性,评估适应度。
  4. 选择与交叉 :执行遗传算法的选择和交叉操作以生成新的个体。
  5. 变异操作 :改变某些组件的冗余水平,保持种群多样性。
  6. 替代策略 :使用新的个体替换当前种群中的个体。
示例代码
% 假设适应度函数已经定义好
fitness_function = @(redundancy) -evaluate_reliability(redundancy);

% 初始化遗传算法参数
ncomponents = 5; % 系统中组件的数量
popsize = 100; % 种群大小

% 生成初始种群
population = generate_initial_redundancy(ncomponents, popsize);

% 运行遗传算法
[x, fval] = ga(fitness_function, ncomponents, [], [], [], [], [], [], ...
              [], optimoptions('ga', 'PopulationSize', popsize, ...
                               'MaxGenerations', 100, 'EliteCount', 2));

% 输出最优冗余方案
disp(['最优冗余方案适应度:', num2str(-fval)]);
disp(['对应的冗余方案:', num2str(x)]);
参数说明
  • ncomponents 是系统中组件的数量。
  • population 是包含冗余方案的矩阵,每一行代表一个个体,每一列代表一个组件的冗余水平。
逻辑分析

在本示例代码中,我们通过遗传算法来优化系统的可靠性。适应度函数 evaluate_reliability 是关键,它根据组件的冗余水平计算出系统的可靠性,从而决定每个个体的适应度。

选择、交叉和变异操作均在 ga 函数中自动完成,该函数还允许用户设置算法参数,例如种群大小和最大迭代次数。适应度函数需要能够准确地评估不同的冗余方案对系统可靠性的影响。

以上三个应用案例展现了遗传算法和遗传退火算法在解决工程优化问题中的多面性和灵活性。通过合理的设计和编码,这些算法能够处理各种约束条件,并在复杂的搜索空间中寻找到令人满意的解决方案。

5. 源代码编写、参数设置与适应度函数构建

5.1 源代码编写的基本原则和技巧

在编写遗传算法或遗传退火算法的源代码时,首先需要遵循一些基本原则和技巧,确保代码的可读性和可维护性。这些原则包括代码的模块化、遵循命名规范、注释的清晰以及代码的高效性。

代码的可读性和可维护性

在编写代码时,应避免过度优化而牺牲代码的可读性。良好的命名规范能够提高代码的可维护性,例如,使用有意义的变量名和函数名,避免使用单字母或模糊不清的命名。

% 示例:使用有意义的变量名
populationSize = 100; % 种群大小
crossoverRate = 0.8; % 交叉率
mutationRate = 0.01; % 变异率

代码效率优化的方法

遗传算法在执行时通常需要多次迭代,因此,代码效率的优化尤为重要。减少不必要的计算,使用高效的算法结构和数据结构,避免在循环中进行重计算,都是优化代码效率的方法。

% 示例:避免在循环中进行重计算
% 在循环外计算一次适应度,避免循环中重复计算
fitnessValues = zeros(populationSize, 1); % 初始化适应度数组
for i = 1:populationSize
    individual = population(i, :);
    fitnessValues(i) = calculateFitness(individual); % 计算个体适应度
end

减少算法运行时间的策略

为了减少算法的运行时间,可以通过并行处理、使用高效的随机数生成器、减少内存使用和优化数据访问模式等策略来实现。

% 示例:并行处理加速适应度计算
parfor i = 1:populationSize
    individual = population(i, :);
    fitnessValues(i) = calculateFitness(individual); % 使用并行计算适应度
end

5.2 遗传算法的参数设置与调优

在实际应用中,遗传算法的参数设置对于算法性能有着极大的影响。正确的参数设置能够帮助算法更快地收敛到最优解或近似最优解。

参数设置的原则

在参数设置时,需要根据问题的特点来选择合适的参数。例如,种群大小通常需要足够大,以便能够探索解空间;交叉率和变异率则需要根据问题的复杂程度进行调整。

% 示例:参数设置
options = optimoptions('ga', ...
    'PopulationSize', 100, ...
    'CrossoverFraction', 0.8, ...
    'MutationRate', 0.01, ...
    'EliteCount', 2);

参数敏感性分析

通过进行参数敏感性分析,可以了解不同参数变化对于算法性能的影响,以便找到最佳的参数组合。

% 示例:参数敏感性分析
populationSizes = [50, 100, 200];
crossoverRates = [0.6, 0.8, 1.0];
mutationRates = [0.001, 0.01, 0.1];

for size = populationSizes
    for cross = crossoverRates
        for mut = mutationRates
            % 运行算法并记录结果
        end
    end
end

实例:参数调优的实际案例

在实际应用中,可以通过设计实验,系统地改变参数设置,以找到最适合当前问题的参数组合。

5.3 适应度函数的设计与构建

适应度函数是遗传算法评价种群中个体优劣的标准,其设计对于算法的性能至关重要。

适应度函数的作用与设计原则

适应度函数应该能够准确反映个体的优劣,并且设计时要考虑到计算效率和区分度。

% 示例:适应度函数设计
function fitness = calculateFitness(individual)
    % 适应度计算逻辑
    fitness = -sum(individual.^2); % 以最小化问题为例
end

不同问题适应度函数的构建方法

适应度函数的设计与构建需要根据具体问题来定制,例如旅行商问题(TSP)会采用不同的适应度函数来评估路径的优劣。

% 示例:TSP问题的适应度函数
function fitness = tspFitness(individual, distances)
    % 适应度计算逻辑
    fitness = 1/sum(pdist(individual, distances)); % 距离越短,适应度越高
end

遗传算法和遗传退火算法适应度函数的比较

适应度函数在遗传算法和遗传退火算法中的应用方式有所不同。遗传退火算法引入了温度参数来控制搜索过程,因此适应度函数在其中的作用可能会受到温度的影响。

% 示例:遗传退火算法中的适应度函数
function fitness = annealingFitness(individual, temperature)
    % 适应度计算逻辑,考虑温度参数的影响
    fitness = calculateFitness(individual) / temperature;
end

通过本章的介绍,读者应该能够了解源代码编写的基本原则和技巧,掌握如何设置和优化遗传算法的参数,以及如何设计适应度函数来解决特定问题。在下一章中,我们将深入探讨遗传算法和遗传退火算法在实际应用中的案例。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:遗传算法和遗传退火算法是基于自然选择和进化原理的优化计算方法。本资料包深入探讨了这两种算法的概念、编程技巧,以及在Matlab环境下的操作流程。遗传算法涉及编码、选择、交叉和变异等步骤,而遗传退火算法则通过控制温度参数来避免早熟收敛。学习本资源包,你将掌握如何编写算法源代码,使用工具箱高效实现算法,并了解其在工程、机器学习等领域的应用案例,从而提升解决实际问题的能力。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值