我们在计划中遵循以下三个主要步骤:授权twitter API客户端。
向Twitter API发出GET请求以获取特定查询的推文。
解析推文。将每条推文分类为正面,负面或中立。
首先,我们创建一个TwitterClient类。该类包含与Twitter API交互和解析推文的所有方法。我们使用__init__函数来处理API客户端的身份验证。
在get_tweets函数中,我们使用:fetched_tweets = self.api.search(q = query,count = count)
调用Twitter API来获取推文。
在get_tweet_sentiment中,我们使用textblob模块。analysis = TextBlob(self.clean_tweet(tweet))
import re
import tweepy
from tweepy import OAuthHandler
from textblob import TextBlob
class TwitterClient(object):
'''
Generic Twitter Class for sentiment analysis.
'''
def __init__(self):
'''
Class constructor or initialization method.
'''
# keys and tokens from the Twitter Dev Console
consumer_key = 'XXXXXXXXXXXXXXXXXXXXXXXX'
consumer_secret = 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX'
access_token = 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX'
access_token_secret = 'XXXXXXXXXXXXXXXXXXXXXXXXX'
# attempt authentication
try:
# create OAuthHandler object
self.auth = OAuthHandler(consumer_key, consumer_secret)
# set access token and secret
self.auth.set_access_token(access_token, access_token_secret)
# create tweepy API object to fetch tweets
self.api = tweepy.API(self.auth)
except:
print("Error: Authentication Failed")
本文介绍了如何使用Python进行Twitter情感分析。通过创建TwitterClient类并授权API客户端,然后向Twitter API发送GET请求获取推文,最后利用TextBlob库对推文进行情感分类,将每条推文标记为正面、负面或中立。

1786

被折叠的 条评论
为什么被折叠?



