得力如何用计算机算行列式,行列式的计算方法(课堂讲解版).docx

c8da8f5a7cda2d62dda9e5a200b168b9.gif行列式的计算方法(课堂讲解版).docx

计算 n 阶行列式的若干方法举例n 阶行列式的计算方法很多,除非零元素较少时可利用定义计算(按照某一列或某一行展开完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。1利用行列式定义直接计算例 计算行列式 01020nDn解 Dn 中不为零的项用一般形式表示为 .121nnaa该项列标排列的逆序数 t(n1 n21n)等于 ,故12.nn2利用行列式的性质计算例 一个 n 阶行列式 的元素满足 则称 Dn 为反对称nijDa,1,2,ijjia行列式, 证明奇数阶反对称行列式为零.证明由 知 ,即ijjiaii0,12,i n故行列式 Dn 可表示为 ,由行列式的性质 ,12312331230nnnaaaa A1232132312300nn nnnaDaa 123123312300nnnnaaa nD当 n 为奇数时,得 Dn D n,因而得 Dn 0.3化为三角形行列式若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。因此化三角形是行列式计算中的一个重要方法。化三角形法是将原行列式化为上(下)三角形行列式或对角形行列式计算的一种方法。这是计算行列式的基本方法重要方法之一。因为利用行列式的定义容易求得上(下)三角形行列式或对角形行列式的性质将行列式化为三角形行列式计算。原则上,每个行列式都可利用行列式的性质化为三角形行列式。但对于阶数高的行列式,在一般情况下,计算往往较繁。因此,在许多情况下,总是先利用行列式的性质将其作为某种保值变形,再将其化为三角形行列式。例 1 计算行列式 12313795045612D解 这是一个阶数不高的数值行列式,通常将它化为上(下)三角行列式来计算 23145 2342231311-2310100204- 40552 2-D 4352 52413112310404 16 .0066 例 2 计算 n 阶行列式 1231231nnaaDaaa 解 这个行列式每一列的元素,除了主对角线上的外,都是相同的,且各列的结构相似,因此 n 列之和全同将第 2,3,,n 列都加到第一列上,就可以提出公因子且使第一列的元素全是 1 1223 2311223 231 12,2, 1 11 n n nnin n nniiiinaaaaaDaaaaa 31100 .1nnni i A 例 3 计算 n 阶行列式abbDba 解这个行列式的特点是每行(列)元素的和均相等,根据行列式的性质,把第2,3,,n 列都加到第 1 列上,行列式不变,得11abbaDnaba 11bbanba 00banab 1nn例 4浙江大学 2004 年攻读硕士研究生入学考试试题第一大题第 2 小题(重庆大学 2004 年攻读硕士研究生入学考试试题第三大题第 1 小题)的解答中需要计算如下行列式的值1231452121nnDn分析显然若直接化为三角形行列式,计算很繁,所以我们要充分利用行列式的性质。注意到从第 1 列开始;每一列与它一列中有 n-1 个数是差 1 的,根据行列式的性质,先从第 n-1 列开始乘以1 加到第 n 列,第 n-2 列乘以1 加到第 n-1 列,一直到第一列乘以1 加到第 2 列。然后把第 1 行乘以1 加到各行去,再将其化为三角形行列式,计算就简单多了。解 112,2, 1121100311 00002120000112iinnnrinr n nDn nnnn 12112nn4降阶法(按行(列)展开法)降阶法是按某一行(或一列)展开行列式,这样可以降低一阶,更一般地是用拉普拉斯定理,这样可以降低多阶,为了使运算更加简便,往往是根据行列式的特点,先利用列式的性质化简,使行列式中有较多的零出现,然后再展开。例 1、计算 20 阶行列式 201318920276198321D分析这个行列式中没有一个零元素,若直接应用按行(列)展开法逐次降阶直至化许许多多个2 阶行列式计算,需进行 20*201 次加减法和乘法运算,这人根本是无法完成的,更何况是 n阶。但若利用行列式的性质将其化为有很多零元素,则很快就可算出结果。注意到此行列式的相邻两列(行)的对应元素仅差 1,因此,可按下述方法计算解 1120 2018,2,0 911318920227316 1198322013402210iii crD 8例 2 计算 n 阶行列式010010naDa解 将 Dn 按第 1 行展开1000000nn aa aa .12nnna2na例 3 计算 n(n2)阶行列式 001100aDa 解 按第一行展开,得 100000naD aa 再将上式等号右边的第二个行列式按第一列展开,则可得到 112221nnn nnnDaaaa5递(逆)推公式法递推法是根据行列式的构造特点,建立起 与 的递推关系式,逐步推下去,从而求出 的值。 有时也可以找到 与 , 的递推关系,最后利用 , 得到 的值。 注意用此方法一定要看行列式是否具有较低阶的相同结构如果没有的话,即很难找出递推关系式,从而不能使用此方法。例 1 计算行列式 .100010 nD解将行列式按第 列展开,有 ,n 2nnn D11211,n nDD得 。nnnn 232同理得 , nnD1.,;1nn例 2 计算 ayyxxayn 解111 000 nnnnxayDa xaxyaxyy ayxxyaxyaD 同理 1n联立解得 ,yxyxnn )当 时,yx 12112 1n nnn nDaaaDxaxx x 例 3 计算 n 阶行列式 12211000nnnxDxaa 解 首先建立递推关系式按第一列展开,得 1 1111232110000 00n nnn n nnnx xDaxDaxDaxaa ,这里 与 有相同的结构,但阶数是 的行列式1nD 1n现在,利用递推关系式计算结果对此,只需反复进行代换,得 22 122211321 1 nnnnnnnn nnxaxDaxDaxxDaxa ,因 ,故 1 1最后,用数学归纳法证明这样得到的结果是正确的当 时,显然成立设对 阶的情形结果正确,往证对 n 阶的情形也正确由nn、12 11 21 1 n nn nDxaxaxaxaxa ,可知,对 n 阶的行列式结果也成立根据归纳法原理,对任意的正整数 n,结论成立例 4 证明 n 阶行列式 2100112nDn 证明 按第一列展开,得 2000011212120000n 其中,等号右边的第一个行列式是与 有相同结构但阶数为 的行列式,记作 ;第二nD1n1nD个行列式,若将它按第一列展开就得到一个也与 有相同结构但阶数为 的行列式,记2作 2nD这样,就有递推关系式 12nnD因为已将原行列式的结果给出,我们可根据得到的递推关系式来证明这个结果是正确的当 时, ,结论正确当 时, ,结论正确1n12213D设对 的情形结论正确,往证 时结论也正确 k kn由 可知,对 n 阶行列式结果也成立121nnD根据归纳法原理,对任意的正整数 n,结论成立例 5、2003 年福州大学研究生入学考试试题第二大题第 10 小题要证如下行列式等式001001nD1,n证 明 其 中(虽然这是一道证明题,但我们可以直接求出其值,从而证之。 )分析此行列式的特点是除主对角线及其上下两条对角线的元素外,其余的元素都为零,这种行列式称“三对角”行列式 1。从行列式的左上方往右下方看,即知 Dn-1与 Dn具有相同的结构。因此可考虑利用递推关系式计算。证明D n按第 1 列展开,再将展开后的第二项中 n-1 阶行列式按第一行展开有12nnnD ( ) 这是由 Dn-1 和 Dn-2表示 Dn的递推关系式。若由上面的递推关系式从 n 阶逐阶往低阶递推,计算较繁,注意到上面的递推关系式是由 n-1 阶和 n-2 阶行列式表示 n 阶行列式,因此,可考虑将其变形为 11212nnnnn ( )或 ( )现可反复用低阶代替高阶,有 2311 42 211nnnnnnnDDDD ( ) ( ) ( ) ( ) 同样有 2311 42 212nnnnnnn ( ) ( ) ( ) ( )因此当 时由(1) (2)式可解得 ,证毕。1nD6利用范德蒙行列式根据行列式的特点,适当变形(利用行列式的性质如提取公因式;互换两行(列) ;一行乘以适当的数加到另一行(列)去; ... 把所求行列式化成已知的或简单的形式。其中范德蒙行列式就是一种。这种变形法是计算行列式最常用的方法。 例 1 计算行列式122 21121nnnnxxDx解 把第 1 行的1 倍加到第 2 行,把新的第 2 行的1 倍加到第 3 行,以此类推直到把新的第 n1 行的1 倍加到第 n 行,便得范德蒙行列式 1221112nijijnnxxDxxx例 2 计算 阶行列式 其1n1211122221211nnnnnnnabaabD 中 1210na解 这个行列式的每一行元素的形状都是 , 0,1,2,,n即 按降幂排列,nkiiabia按升幂排列,且次数之和都是 n,又因 ,若在第 i 行( 1,2,,n)提出公因子 ,ib 0i ni则 D 可化为一个转置的范德蒙行列式,即 21112221121 112111 .nn jnn nii ijijji jinnnnbbaaba baabbaa 例 3 计算行列式 .xyzyD22解

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值