ChemBERTa 化合物小分子的向量表示及相似检索

本文介绍了如何利用基于transformers的预训练模型ChemBERTa来表示化合物小分子的向量,并进行分子相似性的检索。模型通过分子SMILES进行预训练,其中tokenizer用于构建输入,outputs的pooler_output提供了分子的向量表示。在实际应用中,选择last_hidden_state中的cls向量能获得更好的效果。文章还详细阐述了将分子转化为向量并进行检索的步骤,包括结果展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考:https://arxiv.org/pdf/2209.01712.pdf

模型是基于分子simles进行transformer的MLM预训练的bert模型

1、化合物小分子的向量表示


from transformers import BertTokenizer, AutoTokenizer,BertModel
tokenizer_ = AutoTokenizer.from_pretrained("DeepChem/ChemBERTa-77M-MLM")

model_ = BertModel.from_pretrained("DeepChem/ChemBERTa-77M-MLM")


outputs_ = model_(**tokenizer_("Clc1c(Cl)c(O)ccc1O", return_tensors='pt'))

outputs_.pooler_output[0] ##向量,384维度

这是tokenizer_ 查看输入基构建的输入情况,添加了cls seq 两个token
在这里插入图片描述
这是outputs_结果,pooler_output表示cls向量,注意这里pooler_output其实是在cls上再加了层mlp的&#

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

loong_XL

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值