大模型AI
文章平均质量分 56
大模型算法、AI、GPT、LORA、agent等技术
loong_XL
这个作者很懒,什么都没留下…
展开
-
tokenize-anything 分割加识别描述模型
点选或画框进行分割加识别描述输出。原创 2024-11-12 11:18:28 · 73 阅读 · 0 评论 -
Open Interpreter:大模型交互自动化执行代码开源工具
参考:Open Interpreter(开放解释器) 可以让大语言模型(LLMs)在本地运行代码(比如 Python、JavaScript、Shell 等)。安装后,在终端上运行 $ interpreter 即可通过类似 ChatGPT 的界面与 Open Interpreter 聊天。本软件为计算机的通用功能提供了一个自然语言界面,比如:创建和编辑照片、视频、PDF 等 控制 Chrome 浏览器进行搜索 绘制、清理和分析大型数据集。原创 2024-11-04 15:37:36 · 308 阅读 · 0 评论 -
OmniParser屏幕解析工具
自动化解析屏幕内容定位+识别,获取相关信息可以提供给后续大模型做处理,比如ai智能体。中文识别暂时不大支持。原创 2024-11-04 10:30:00 · 220 阅读 · 0 评论 -
AI智能体工具:AutoGLM、MobileAgent、Claude compute use、PC-Agent
用AI智能体自动处理完成任务。原创 2024-11-04 10:18:33 · 160 阅读 · 0 评论 -
agent实现:通过prompt方式实现agent自定义使用
参看:通过prompt形式,基本任何llm模型都可以使用来自定义agent,不用只能那些支持functioncall的大模型的,更灵活自由。原创 2024-10-07 11:06:04 · 479 阅读 · 0 评论 -
LLM prompt提示设计与优化
参看:大语言模型中 Prompt 的设计和优化方法,包括使用 Prompt 框架、提供输出样例、使用分隔符号区分内容单元以及引导模型 “思考” 等技巧。通过这些方法,可以提高大语言模型输出的有效性、相关性和稳定性,使其更好地满足用户的需求。原创 2024-10-07 10:36:07 · 607 阅读 · 0 评论 -
RAG新思路降低检索错误率:为文档划分的每个块进行大模型上下文构建
【代码】RAG新思路降低检索错误率:为文档划分的每个块进行大模型上下文构建。原创 2024-09-20 16:58:07 · 81 阅读 · 0 评论 -
稀疏向量 milvus存储检索RAG使用案例
暂时只能在linux ubuntu或mac上使用,因为windows、centos暂时不支持milvus_lite:https://github.com/milvus-io/milvus/issues/34854。原创 2024-09-20 15:12:20 · 500 阅读 · 0 评论 -
qwen2.5 vllm推理;openai function call调用中文离线agents使用
参考:运行:运行调用tools报错,qwen官方说会尽快修复增加 /ai/template.jinja 文件。原创 2024-09-19 12:46:28 · 1029 阅读 · 1 评论 -
vllm 部署qwen2.5-7b;opeanai 接口访问、requests接口
参考:https://qwenlm.github.io/zh/blog/qwen2.5/https://huggingface.co/Qwen/Qwen2.5-7B-Instruct下载:vllm部署:流式非流式原创 2024-09-19 13:26:02 · 577 阅读 · 0 评论 -
reader-lm:小模型 html转markdown
输入网址:https://www.galaxy-geely.com/E5。原创 2024-09-12 19:13:21 · 624 阅读 · 0 评论 -
claude:prompt新奇使用方法
下面prompt大概定义了4个函数,第一个算是system定义,中间二个是需要他执行的东西,最后一个是入口;另外测试claude使用较好,可以直接调用前端显示,svg图片下载,,deepseek效果一般。参考:https://web.okjike.com/originalPost/66e170618becdf39a1c19761。原创 2024-09-12 13:45:31 · 481 阅读 · 0 评论 -
qwen2 VL 多模态图文模型;图像、视频使用案例
【代码】qwen2 VL 多模态图文模型;图像、视频使用案例。原创 2024-09-11 12:57:28 · 863 阅读 · 0 评论 -
vllm 推理qwen gguf模型使用案例;openai接口调用、requests调用
vllm 推理qwen gguf模型使用案例;openai接口调用、requests调用原创 2024-08-29 11:51:26 · 167 阅读 · 0 评论 -
transformers quantization bitsandbytes实时量化方法使用load_in_4bit,load_in_8bit;量化模型保存及加载使用
参考:https://huggingface.co/docs/transformers/main/en/quantization/bitsandbytes?bnb=8-bithttps://www.atyun.com/57101.htmlhttps://huggingface.co/blog/4bit-transformers-bitsandbytesbitsandbytes错误参考:https://cnloong.blog.csdn.net/article/details/141607933使用q原创 2024-08-28 17:10:48 · 283 阅读 · 0 评论 -
PEFT qwen2 lora微调模型训练案例
参考:https://github.com/huggingface/peft##文档https://huggingface.co/docs/peft/indexhttps://www.wehelpwin.com/article/4299https://www.ethanzhang.xyz/2024/07/09/%E3%80%90%E4%B8%AA%E4%BA%BA%E5%8D%9A%E5%AE%A2%E3%80%91%E4%BD%BF%E7%94%A8huggingface%E5%9C%A8%E5%8原创 2024-08-28 09:26:58 · 831 阅读 · 0 评论 -
autogen studio agents可视化编排使用
自定义agent,同时模型记得更换。多agent编排组织实现自定义功能。本文章windows平台测试。支持添加离线vllm模型。2)自定义agent。原创 2024-08-26 14:32:14 · 70 阅读 · 0 评论 -
autogen agent使用框架案例调用ollama、vllm模型接口
参考:https://github.com/microsoft/autogenhttps://microsoft.github.io/autogen/docs/topics/non-openai-models/local-vllm安装:pyautogen-0.2.35openai-1.24.01) ollama2)vllm制定一个从哈尔滨去北京旅游5天的计划,我们可以按照以下日程进行规划:请根据个人兴趣和实际情况调整行程, 确保有充足的休息时间,同时关注天气 预报和交通状况,以确保旅行的顺利原创 2024-08-23 11:20:40 · 252 阅读 · 0 评论 -
AI搜索产品:秘塔、天工、perplexity、felo、360AI搜索、bilin
https://metaso.cn/https://www.tiangong.cn/https://www.perplexity.ai/https://felo.ai/search原创 2024-08-21 22:56:47 · 665 阅读 · 0 评论 -
AI在线免费数学工具:Qwen2-Math
https://huggingface.co/spaces/Qwen/Qwen2-Math-Demo原创 2024-08-21 00:01:36 · 424 阅读 · 0 评论 -
LongWriter 大模型超长输出使用案例
参考:大概是通过agent方式区分步骤实现。原创 2024-08-15 14:15:17 · 105 阅读 · 0 评论 -
falcon7B mamba非Transformer架构大模型案例使用
mamba属于非Transformer架构,参考:https://www.qbitai.com/2024/06/149893.html。transformers 暂时没合并,需要下载源码安装。测试下来gpu消耗,生成时间暂时也不快。原创 2024-08-14 12:42:34 · 104 阅读 · 0 评论 -
ollama function call使用agent案例
参考:https://ollama.com/blog/tool-support运行ollama0.3.5版本messages = [{“role”: “user”, “content”: “What’s the time and the weather like now in Hangzhou?”}]原创 2024-08-13 15:51:14 · 196 阅读 · 0 评论 -
LLaMA-Factory 可视化界面qwen2 lora微调自有数据集使用案例
参考:https://github.com/hiyouga/LLaMA-Factory启动https://github.com/hiyouga/LLaMA-Factory/blob/main/data/README_zh.md下载:https://huggingface.co/datasets/AISPIN/shiji-70liezhuan/tree/main把jsonl alpaca格式数据下载下来上传到:LLaMA-Factory/data文件夹下,更名为wenyanwen.jsonl修原创 2024-08-13 10:08:10 · 338 阅读 · 0 评论 -
OpenAI Function Call实现大模型agent自己判断用工具、上网搜索或直接大模型回答案例
3)如果大模型Function Call调用输出没有工具相关信息,就直接大模型输出结果。2)大模型Function Call自己判断内容属于哪个工具就去调用对应工具。1)写了两个function,一个是天气工具,一个是搜索工具。第一个正常调用天气工具后再大模型回答,第二个调用搜索工具后再大模型回答,第三个没有调用工具大模型自己回复。大模型用的deepseek。原创 2024-08-04 16:33:32 · 259 阅读 · 0 评论 -
OpenAI Function Call大模型调用单个多个agent使用案例
【代码】OpenAI Function Call大模型agent工具调用简单案例。原创 2024-08-03 15:50:08 · 553 阅读 · 0 评论 -
LLM 大模型文档语义分块、微调数据集生成
根据上下句的语义相关性,相关就组合成一个分块,不相关就当场两个快。大模型用的deepseek。原创 2024-08-03 13:22:32 · 236 阅读 · 0 评论 -
LLM应用-prompt提示:让大模型总结生成PPT
参考:思路:通过大模型生成markdown内容,通过markdown去生成PPT技术:Marp()这里用的这个工具进行markdown转PPT。原创 2024-08-01 18:22:26 · 582 阅读 · 0 评论 -
chatglm4 支持更长内容输入model_max_length 128k;外推最大支持1M 100万
要使用 --enable_chunked_prefill --max_num_batched_tokens 8192 两个参数,不适用两张卡也不足。GLM-4-9B-Chat-1M 的模型仓库,支持1M上下文长度(100万)texts是加载的一个文档,大概2万多字。测试下来10万上下午没问题,两张卡。原创 2024-07-19 12:01:27 · 965 阅读 · 0 评论 -
ollama 模型显存常驻OLLAMA_KEEP_ALIVE;支持并发访问OLLAMA_NUM_PARALLEL;支持同时推理多个模型
参考:https://blog.csdn.net/weixin_42357472/article/details/137666022。原创 2024-07-01 12:46:59 · 1921 阅读 · 0 评论 -
qwen2 支持更长内容输入model_max_length 32k;外推最大支持128k
config配置文件里也可以看到一些模型信息,能输入识别长度max_position_embeddings或model_max_length=32768;max-model-len 长度可以最大填写模型config里max_position_embeddings=32768;测试下来两万多没有问题。texts测试读取pdf两万多个字输入模型测试。原创 2024-06-29 10:53:44 · 532 阅读 · 0 评论 -
gemma2 vllm和ollama推理部署;openai接口调用、requests调用
参考:hl=zh-cn发布了两个型号9B\27B支持上下文长度有点短:4096。原创 2024-06-29 10:24:11 · 541 阅读 · 0 评论 -
LLM生成大模型在生物蛋白质应用:ESM3、FoldToken、ProGen、ProtGPT2
参考:通过GPT模型原理,输入蛋白质序列等模态输出预测的蛋白质序列及结构。原创 2024-06-25 22:40:14 · 652 阅读 · 2 评论 -
transformers 不同精度float16、bfloat16、float32加载模型对比
float16与bfloat16加载空间需要差不多,差不多GPU需要15G多。GPU需要19G多,精度会高些32bit,空间大些。默认bfloat16。原创 2024-06-17 09:53:29 · 921 阅读 · 0 评论 -
大模型生成的常见Top-k、Top-p、Temperature参数
参考:https://zhuanlan.zhihu.com/p/669661536https://www.douyin.com/video/7380126984573127945综合下来:topP一般给后续选择的空间比topK要多些https://www.douyin.com/video/7380324563369889061主要是在改变 softmax 生成解码token的概率上(所有词表每个词的可能概率):正常softmax加速Temperature后的softmax每个指数除以t;e是自然是原创 2024-06-16 21:17:32 · 1506 阅读 · 0 评论 -
AI实时免费在线图片工具4:WordArt艺术字生成;IC-Light打光模型;screenshot to code图像直接生成网页
参考:https://github.com/abi/screenshot-to-code。官网:https://screenshottocode.com/原创 2024-06-11 22:17:04 · 388 阅读 · 0 评论 -
Flash Diffusion 加速文生图模型生成;Pixart-α加速测试
diffusers 这里是官方上面有更改,参考:https://github.com/gojasper/flash-diffusion/blob/main/requirements.txt。参考:https://github.com/gojasper/flash-diffusion。生成速度是快很多,4090差不多3秒生成。原创 2024-06-11 09:52:03 · 237 阅读 · 0 评论 -
gpt、llama大模型模型结构细节探索;LLM深度模型大模型transformer可视化
参考:https://github.com/naklecha/llama3-from-scratch(一定要看看)https://github.com/karpathy/build-nanogpt/blob/master/play.ipynb视频:https://www.youtube.com/watch?v=l8pRSuU81PU可以查看打印每层权重:原创 2024-06-10 10:35:31 · 828 阅读 · 0 评论 -
qwen2 vllm推理部署;openai接口调用、requests调用
参考:https://qwenlm.github.io/zh/blog/qwen2/https://huggingface.co/Qwen下载的Qwen2-7B-Instruct使用:Qwen2-7B-Instruct比较相近模型:原创 2024-06-07 09:36:19 · 1987 阅读 · 0 评论 -
大模型常见工程化工具:微调、量化、部署、Agent、RAG等
包括微调(Axolotl、Llama-Factory、Firefly、Swift、XTuner)、量化(AutoGPTQ、AutoAWQ、NeuralCompressor)、部署(vLLM、SGL、SkyPilot、TensorRT-LLM、OpenVino、TGI)、本地运行(MLX、Llama.cpp、Ollama、LMStudio)、Agent及RAG(检索增强生成)框架(LlamaIndex, CrewAI, OpenDevin)、评测(LMSys,原创 2024-06-07 09:18:13 · 1485 阅读 · 0 评论
分享