python矩阵运算函数_Numpy 常用矩阵计算函数

本文介绍了Python中用于矩阵运算的Numpy库,包括ndarray对象的重要属性如维度、形状、元素类型等,并展示了如何创建矩阵,如通过列表、array函数以及特殊函数如zeros、ones、empty。还详细讲解了矩阵的常见操作,如加减乘除、点乘和矩阵乘法,以及索引、分片和迭代。此外,还涉及了Numpy的其他功能,如求和、最大最小值、常用函数,以及矩阵形状的变换和组合。
摘要由CSDN通过智能技术生成

基本属性

在做一些数据分析的时候,我们通常会把数据存为矩阵的形式,然后python本身对于矩阵的操作是不够的,因此出现了numpy这样一个科学开发库来进行python在次上面的不足。

Numpy's array 类被称为ndarray。 这个对象常用而重要的属性如下:

ndarray.ndim: 输出矩阵(数组)的维度

ndarray.shape: 输出矩阵的各维数大小,相当于matlab中的size()函数

ndarray.size: 输出矩阵(数组)元素的总个数,相当于各维数之积

ndarray.dtype: 输出矩阵元素的类型,如int16, int32, float64等

ndarray.itemsize: 输出矩阵中每个元素所占字节数

一个例子

>>> from numpy import *

>>> a = arange(15).reshape(3, 5)>>>a

array([[ 0,1, 2, 3, 4],

[5, 6, 7, 8, 9],

[10, 11, 12, 13, 14]])>>>a.shape

(3, 5)>>>a.ndim2

>>>a.dtype.name'int32'

>>>a.itemsize4

>>>a.size15

>>>type(a)

numpy.ndarray>>> b = array([6, 7, 8])>>>b

array([6, 7, 8])>>>type(b)

numpy.ndarray

矩阵创建

python中有多种方式来创建矩阵,第一种是通过Python中的列表直接创建,第二种是通过numpy中的array函数,第三种是利用一些特殊的函数如zeros, ones, empty等来创建一些特殊的矩阵。

>>> from numpy import *

>>> a = array( [2,3,4] )>>>a

array([2, 3, 4])>>>a.dtype

dtype('int32')>>> b = array([1.2, 3.5, 5.1])>>>b.dtype

dtype('float64')-----------------------------------------------

>>> a = array(1,2,3,4) #WRONG

>>> a = array([1,2,3,4]) #RIGHT

-----------------------------------------------

>>> b = array( [ (1.5,2,3), (4,5,6) ] )>>>b

array([[1.5, 2. , 3. ],

[4. , 5. , 6. ]])----------------------------------------------

>>> c = array( [ [1,2], [3,4] ], dtype=complex )>>>c

array([[1.+0.j, 2.+0.j],

[3.+0.j, 4.+0.j]])-----------------------------------------------

>>> zeros( (3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值