基本属性
在做一些数据分析的时候,我们通常会把数据存为矩阵的形式,然后python本身对于矩阵的操作是不够的,因此出现了numpy这样一个科学开发库来进行python在次上面的不足。
Numpy's array 类被称为ndarray。 这个对象常用而重要的属性如下:
ndarray.ndim: 输出矩阵(数组)的维度
ndarray.shape: 输出矩阵的各维数大小,相当于matlab中的size()函数
ndarray.size: 输出矩阵(数组)元素的总个数,相当于各维数之积
ndarray.dtype: 输出矩阵元素的类型,如int16, int32, float64等
ndarray.itemsize: 输出矩阵中每个元素所占字节数
一个例子
>>> from numpy import *
>>> a = arange(15).reshape(3, 5)>>>a
array([[ 0,1, 2, 3, 4],
[5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]])>>>a.shape
(3, 5)>>>a.ndim2
>>>a.dtype.name'int32'
>>>a.itemsize4
>>>a.size15
>>>type(a)
numpy.ndarray>>> b = array([6, 7, 8])>>>b
array([6, 7, 8])>>>type(b)
numpy.ndarray
矩阵创建
python中有多种方式来创建矩阵,第一种是通过Python中的列表直接创建,第二种是通过numpy中的array函数,第三种是利用一些特殊的函数如zeros, ones, empty等来创建一些特殊的矩阵。
>>> from numpy import *
>>> a = array( [2,3,4] )>>>a
array([2, 3, 4])>>>a.dtype
dtype('int32')>>> b = array([1.2, 3.5, 5.1])>>>b.dtype
dtype('float64')-----------------------------------------------
>>> a = array(1,2,3,4) #WRONG
>>> a = array([1,2,3,4]) #RIGHT
-----------------------------------------------
>>> b = array( [ (1.5,2,3), (4,5,6) ] )>>>b
array([[1.5, 2. , 3. ],
[4. , 5. , 6. ]])----------------------------------------------
>>> c = array( [ [1,2], [3,4] ], dtype=complex )>>>c
array([[1.+0.j, 2.+0.j],
[3.+0.j, 4.+0.j]])-----------------------------------------------
>>> zeros( (3