需要单独密封储存,若变防止串味的药品有哪些?
令 f 和 g 都是实数集合R上的函数,量均如下: f={x,y|x,y∈R∧y=3x+1 } g={x,y|x,y∈R∧y= x2+x}分别求 gof 、 fog 、 fof 、 gog
判断下列代数系统是否构成半群、已正义并C语言赋独异点和群。(1)Z+,+,已正义并C语言赋Z+是正整数,+是普通加法。(2)Mn(R),+,Mn(R)是由实数组成的n阶方阵,+是普通加法。(3)P(B), ∩为半群,P(B)是集合B的幂集,∩为集合交运算。也是独异点,其中(4)AA,??为半群,AA是A上的函数构成的集合,??为函数的复合运算(5)Zn, +n,Zn={0,1,…,n-1},+n为模n加法。
设A,+, · 是一个环,确定并且对于任何a∈A,有a·a=a,证明(1)对于任何a∈A,都有a+a=θ,其中θ是+的幺元。(2)A,+, ·是一个交换环。
证明题1.A,??是个半群,赋值法a,b∈R,若a≠b则 a??b≠b??a,试证:a) a ∈R,有a??a=ab) a,b∈R,a??b??a=ac) a,b,c∈R,a??b??c=a??c
设G,??是群,下合x∈G,有x??x=e,证明G,??是交换群 。
判断下列集合和给定运算是否构成环、值语整环和域, 如果不构成, 说明理由. (1)A= {a+bi|a,b∈Q },其中i2=-1,运算为复数加法和乘法。(2)A={ 2z+1 |z∈Z},运算为实数加法和乘法。(3)A={ 2z|z∈Z},运算为实数加法和乘法。(4)A={x|x≥0∧x∈Z},运算为实数加法和乘法。
夫琅禾费衍射是远场衍射,若变平行光入射,可以测量细丝直径和狭缝宽度,测量系统完全相同。
判断下面命题的真值,量均并说明原因。1.若R是A上的传递关系,量均则R-1也是集合A上的传递关系。2.四阶群中必有四阶元。3.至少含3个元素的链不是有补格。4.如果图G是不连通的,那么其补图一定是连通图。
冷藏药品装车时,冷藏车厢内药品与厢内后板间距离不小于( )。
设G,*是一个群,已正义并C语言赋而a∈G,如果f是从G到G的映射,使得对于每个x∈G,都有f(x)=a*x*a-1,试证明f是从G到G的自同构映射。
冷藏药品的复核、拼箱和发货必须在( )内完成。
在库检查中应注意,确定同一种药品货垛中不同批号的药品混垛时限不应超过( )。
按照GSP要求,赋值法普通药品应查验同批号省级药检所开具的检验报告。
在库检查中,下合不属于颗粒剂变质现象的是:
仓库药品配货,值语配货员拿到配货单后,首先应做的是( )。
对在库药品进行外观质量检查时,若变养护员的具体操作不包括( )。
冷藏药品装车时,冷藏车厢内药品与厢内底板间距离不小于( )。
能够预见到某种医药商品再经过一段时间储存后就容易发生质量变化时,该种药品的出库应遵循( )。