圆钢孔型计算机模拟,大圆钢计算机辅助孔型设计系统与有限元模拟的研究

摘要:

孔型设计直接影响到新产品的开发周期与产品的精度,是实现在初轧机上生产大规格圆钢的关键技术.本文针对现有的设备条件以及大圆钢在精轧阶段的变形特点,采用与传统中小型棒线材精轧孔型设计不同的设计方法,研究了在初轧机上生产大规格圆钢涉及到的关键技术问题.

在孔型方面,对在初轧机上生产大圆钢的稳定性进行分析,提出了扁六角一八角一圆孔型系统.为了提高孔型设计的效率,计算精度以及充分发挥设备的能力,将各道次压下量分配与各孔型设计的计算公式,用VB编制成程序,只要输入成品与坯料参数,以及对变形的孔型系统进行道次选择,就可以迅速,准确地对各道次进行压下量分配,绘制出相应孔型图形,解决了压下量分配与孔型图绘制的问题,实现大圆钢计算机辅助孔型设计系统(computer aided roll—pass design system,简称CARDS).采用MARC软件将热力耦合弹塑性大变形有限元方法,应用于大圆钢多道次变形过程三维模拟仿真的研究中.根据模拟结果反映出来的问题(如孔型的充满度,坯料的宽展量,产品尺寸等),对设计的孔型系统中各孔型的参数及压下量分配进行修改和优化,为在初轧机上生产大圆钢提供合理的理论依据.

展开

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值