变换解差分方程例题_微分方程(十六、十七)相平面、平衡点

本文介绍了线性非时变系统的相平面分析,探讨了平衡点及其分类,包括结、鞍点、聚点等。通过例题14和例题2详细解释了如何确定平衡点性质并进行相轨迹分析,涉及微分方程的解法和特征值计算。
摘要由CSDN通过智能技术生成

357193be70082053b1a493407eb00e3f.png

封面:乔治·孔多(George Condo)《红色上的两个头像》(Double Heads on Read),2014

如果对您有一点帮助,请点赞、关注、打赏 : )

父级目录:

Hreyulog:目录·《微分方程》(更新中)​zhuanlan.zhihu.com
2e73e06da61eeff1d3688e63fdbf36bc.png

上一节:

相平面(Фазовая плоскость):

我们考虑具有实系数两个方程的线性非时变系统:

(1)

其中

——系统(1)的某解,则在变量为
的空间中可以画出与此解相对应的三维积分曲线。现在我们考虑一个平面曲线,它是指出的整体积分曲线在平面
上的投影。

定义一:平面

叫作相平面;变量
叫作系统(1)的相变量(фазовые переменные);系统(1)的积分曲线在相平面上的投影叫作系统(1)的相轨迹。

易证得系统(1)的相轨迹满足某一阶微分方程。为了推导这个方程,有必要从系统(1)中排除一个自变量

。由于系统(1)的系数常数,因此将系统(1)的第二个方程式除以第一个方程式得:
(2)。

定义二:方程(2)叫作相轨迹方程。

现在系统(1)有解:

(3),
——为某常数。这种解叫作固定解,称为固定解或固定状态。符合(3)的积分曲线为平行于
轴的直线。该曲线在平面
上的投影点
。该点为系统(1)的相轨迹,叫作系统(1)静止点或平衡。

将解(3)代入系统(1),我们看到系统(1)平衡位置的坐标满足线性方程组:

(4)

由此得出结论,在等式(2)的右侧无法定义。该点是方程式(2)的奇异点。

除平衡位置外,系统(1)的任何相轨迹都是方程式(2)的积分曲线,反之亦然:方程式(2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值