扩展有限元求解弱不连续问题.
扩展有限元求解弱不连续问题数学计算机学院 信息与计算科学专业 2011届 段斯琦摘要:扩展有限元 ( XFEM ) 是在标准有限元的框架下,提出来的一种有利于解决裂纹、孔洞、夹杂等不连续问题的数值方法. 本文阐述了XFEM的基本原理,分别以孔洞、夹杂做为弱不连续问题的代表,推导了扩展有限元求解弱不连续问题的支配方程,并采用水平集法 ( LSM ) 描述不连续面的几何特性及其移动规律;展示了扩展有限元法在求解弱不连续问题中的独特优势. 关键词:扩展有限元;弱不连续;水平集法;孔洞/夹杂中图分类号:TB115The Extended Finite Element Method for Weak DiscontinuitiesAbstract: The extended finite element method ( XFEM ) is a new numerical method for modeling discontinuity such as cracks,holes,inclusions etc,which based on the standard finite element framework. In this paper,the basic principle of extended finite element method for solving the weak discontinuity problem such as void or inclusion in solids is introduced. The governing equation of extended finite element method solution of weak discontinuities is derived. The level sets method ( LSM ) is used to describe the geometric characteristics and movement rules of discontinuity. The numerical results show the unique advantage of the extended finite element method to solving the weak discontinuity problems.Key words: extended finite element method; weak discontinuities; level sets method; void & inclusion目录1 引言12 扩展有限元法 ( XFEM )22.1 XFEM的基本方程22.2 单位分解函数 ( PUM )22.3 孔洞和夹杂问题33 水平集法 ( LSM )43.1 水平集函数53.2 LSM对孔洞和夹杂的描述54 XFEM的位移模式84.1 Standard-XFEM84.2 Shifted-XFEM94.3 Modified-XFEM94.4 Corrected-XFEM94.5 Expanded corrected-XFEM105 数值算例105.1 单夹杂问题115.2 多夹杂问题13结束语14参考文献14致谢15扩展有限元求解弱不连续问题1 引言固体力学中存在两类不连续问题:强不连续 ( 位移不连续 ) 问题和弱不连续 ( 应变不连续 ) 问题. 常规有限元法 ( finite element method,FEM ) 在处理这些不连续问题时,需严格按照材料的几何或物理边界来剖分网格,前处理工作十分繁琐甚至无能为力. 常规有限元方法是目前解决科学和工程问题最有效的数值方法,与其它数值方法相比,它具有适用于任意几何形状和边界条件、材料和几何非线性问题、容易编程、成熟的大型商用软件较多等优点. 但是,在求解一些特殊问题,特别是间断问题时,有限元方法存在着某些固有的缺陷. 例如: ( 1 ) 有限元采用的是连续性的位移近似函数,对于裂纹类强间断问题,为获得足够的计算精度,需要对网格进行足够的细分,计算量极大. ( 2 ) 在采用拉格朗日法求解金属冲压成形、裂纹动态扩展、流固耦合、局部剪切等涉及特大变形问题时,有限元网格可能会产生严重扭曲,使计算精度急剧下降甚至计算无法继续,因此,需要不断地进行网格重构,计算量极大. 同时,为了模拟裂纹的动态扩展过程,也需要不断地进行网格重构. ( 3 ) 在处理夹杂问题时,单元的边须位于夹杂与基体的界面处,即使对于网格自动化程度很高的二维问题这也很不容易,而三维问题则更复杂. 针对有限元方法的这些不足,1999年,美国西北大学的Belytschko研究组提出了一种用于处理