重庆春季高考计算机试题,2017年重庆春季高考数学模拟练习题一

2021年高职单招升学一对一咨询高职单招万老师:18623318175(微信)

2016101017340794594.jpg

一.填空题。

1.由1、2、3、4、5组成没有重复数字正整数,共有    个三位数;

2.数列1,4,7,10,…,的第8项等于     ;

3.复数

是虚数单位,则z在复平面内对应的点在第    象限;

4.从甲、乙、丙三人中任选2名代表,甲被选中的概率为    ;

5.在空间,若长方体的长、宽、高分别为a、b、c,则长方体的对角线长为

.将此结论类比到平面内,可得:矩形的长、宽分别为a、b,则矩形的对角线长为      ;

6.已知

,其中

是虚数单位,则a+b=     ;

7.已知

…,将此等式推广到一般情形,可

8.计算:

          ;

9.掷一枚骰子,观察掷出的点数,则事件“掷出奇数点或3的倍数”的概率为    ;

10.用数学归纳法证明不等式“

”时,由n=k到n=k+1时,不等式左边应添加的项是     ;

11.二项式

展开式中的常数项是       ;

12.有一段长为10米的木棍,现要截成两段,每段不小于3米的概率为     ;

13.在2008年奥运选手选拔赛上,8名男运动员参加100米决赛.其中甲、乙、丙三人必须在1、2、3、4、5、6、7、8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有      种;

14.某城市在中心广场建造一个花圃,花圃分为6个部分

(如图所示),现要栽种4种不同颜色的花,每部分栽种一种

且相邻部分不能栽种同样颜色的花,不同的栽种方法有      种.

二.解答题(共6小题)

15.(14分)已知复数

满足

.

(1)求复数

,并判断

是否为方程

的一个根;(2)求复数

的模.

16.(14分)已知复数z=

.

(1) m取何实数值时,z是实数?

(2) m取何实数值时,z是纯虚数?

17.(14分)已知关于x的一元二次方程

,满足a≥0且b≥0.

(1)若a是从0、1、2三个数中任取的一个数,b是从0、1两个数中任取的一个数,求上述方程有实根的概率.

(2)若

,b是从区间[0,3]任取的一个数,求上述方程有实根的概率.

18.(16分)已知数列

满足条件

.

(1)若

,求

的值.

(2)已知对任意的

,都有

,求证:

对任意的正整数

都成立;

19.(16分)4个不同的球,4个不同的盒子,把球全部放入盒内.

(1)恰有1个盒不放球,共有几种放法?

(2)恰有2个盒不放球,共有几种放法?

本文来源地址:http://cqck.danzhaowang.com/fxzd/49439.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值