2021年高职单招升学一对一咨询高职单招万老师:18623318175(微信)
一.填空题。
1.由1、2、3、4、5组成没有重复数字正整数,共有 个三位数;
2.数列1,4,7,10,…,的第8项等于 ;
3.复数
是虚数单位,则z在复平面内对应的点在第 象限;
4.从甲、乙、丙三人中任选2名代表,甲被选中的概率为 ;
5.在空间,若长方体的长、宽、高分别为a、b、c,则长方体的对角线长为
.将此结论类比到平面内,可得:矩形的长、宽分别为a、b,则矩形的对角线长为 ;
6.已知
,其中
是虚数单位,则a+b= ;
7.已知
…,将此等式推广到一般情形,可
得
;
8.计算:
;
9.掷一枚骰子,观察掷出的点数,则事件“掷出奇数点或3的倍数”的概率为 ;
10.用数学归纳法证明不等式“
”时,由n=k到n=k+1时,不等式左边应添加的项是 ;
11.二项式
展开式中的常数项是 ;
12.有一段长为10米的木棍,现要截成两段,每段不小于3米的概率为 ;
13.在2008年奥运选手选拔赛上,8名男运动员参加100米决赛.其中甲、乙、丙三人必须在1、2、3、4、5、6、7、8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有 种;
14.某城市在中心广场建造一个花圃,花圃分为6个部分
(如图所示),现要栽种4种不同颜色的花,每部分栽种一种
且相邻部分不能栽种同样颜色的花,不同的栽种方法有 种.
二.解答题(共6小题)
15.(14分)已知复数
满足
.
(1)求复数
,并判断
是否为方程
的一个根;(2)求复数
的模.
16.(14分)已知复数z=
+
.
(1) m取何实数值时,z是实数?
(2) m取何实数值时,z是纯虚数?
17.(14分)已知关于x的一元二次方程
,满足a≥0且b≥0.
(1)若a是从0、1、2三个数中任取的一个数,b是从0、1两个数中任取的一个数,求上述方程有实根的概率.
(2)若
,b是从区间[0,3]任取的一个数,求上述方程有实根的概率.
18.(16分)已知数列
满足条件
.
(1)若
,求
的值.
(2)已知对任意的
,都有
,求证:
对任意的正整数
都成立;
19.(16分)4个不同的球,4个不同的盒子,把球全部放入盒内.
(1)恰有1个盒不放球,共有几种放法?
(2)恰有2个盒不放球,共有几种放法?
本文来源地址:http://cqck.danzhaowang.com/fxzd/49439.html