golang 查询mysql,在mysql和golang中建立动态查询

How can I build a dynamic query depending on the parameters that I get?

This example is stupid and the syntax is wrong but you will get the idea of what I want.

I guess that I need to add a slice of variables to the end of the query.

I know how to do it in PHP, but not in golang.

db := OpenDB()

defer db.Close()

var filter string

if name != "" {

filter = filter " AND name = ?"

}

if surname != "" {

filter = filter + " AND surname = ?"

}

if address != "" {

filter = filter + " AND address = ?"

}

err = db.Query("SELECT id FROM users WHERE login = ?" +

filter, login)

解决方案

To answer your question on how to format the string, the simple answer is to use fmt.Sprintf to structure your string. However see further down for a quick note on using fmt.Sprintf for db queries:

Sprintf formats according to a format specifier and returns the resulting string.

Example:

query := fmt.Sprintf("SELECT id FROM users WHERE login='%s'", login)

err = db.Query(query)

// Equivalent to:

rows, err := db.Query("SELECT id FROM users WHERE login=?", login)

Using this for queries, you're safe from injections. That being said, you might be tempted to modify this and use db.Exec for creations/updates/deletions as well. As a general rule of thumb, if you use db.Exec with fmt.Sprintf and do not sanitize your inputs first, you open yourself up to sql injections.

GoPlay with simple example of why fmt.Sprintf with db.Exec is bad:

https://play.golang.org/p/-IWyymAg_Q

You should use db.Query or db.Prepare in an appropriate way to avoid these sorts of attack vectors. You might have to modify the code sample above to come up with a injection-safe snippet, but hopefully I gave you enough to get started.

### GolangMySQL 查询执行时间性能监控 在 Golang查询 MySQL 的执行时间以及进行性能监控是一个常见的需求。以下是关于如何实现这一目标的具体说明。 #### 使用 `context` 控制 Goroutine 生命周期并设置超时 通过 Go 提供的 `context.Context` 接口,可以在发起数据库操作前设定超时时间或其他控制条件。这有助于防止长时间运行的任务阻塞资源[^4]。例如: ```go ctx, cancel := context.WithTimeout(context.Background(), 2*time.Second) defer cancel() // 执行带上下文的 SQL 查询 rows, err := db.QueryContext(ctx, "SELECT * FROM users WHERE id=?", userId) if err != nil { log.Fatalf("Query failed: %v", err) } defer rows.Close() ``` 上述代码片段展示了如何利用 `context.WithTimeout` 方法为查询指定最大允许的时间间隔(此处设为两秒)。如果超过该时限,则会自动终止此操作,并释放相关联的资源。 #### 流式读取优化内存消耗 对于大规模数据集而言,采用流式的读写方式能够显著减少内存压力。这种方式仅需加载部分记录到内存即可完成处理工作,而不是试图一次性载入整个结果集合[^1]。下面是一段示范性的代码: ```go func streamRead(db *sql.DB) error { ctx, cancel := context.WithCancel(context.Background()) defer cancel() rows, err := db.QueryContext(ctx, "SELECT ...") if err != nil { return fmt.Errorf("failed to query data: %w", err) } defer rows.Close() var buffer []MyStruct // 定义缓冲区大小适中的切片用于暂存解析后的结构体实例 for rows.Next() { // 遍历每一行返回的数据项 var record MyStruct if err := rows.Scan(&record.FieldA, &record.FieldB); err != nil { return fmt.Errorf("scan row failed: %w", err) } buffer = append(buffer[:cap(buffer)], record) // 当达到一定数量后立即发送至下游通道继续后续逻辑... if len(buffer)>=batchSize{ sendBatchToChannel(itemChan,bufffer[:len(buffer)]) buffer=buffer[:0] } } return nil } ``` 这里实现了基于批量提交机制的大规模数据提取过程,在每次累积满一批次之后立即将其推送出去以便进一步加工或存储,从而维持较低水平的整体内存占用率。 #### 并发处理提升效率 为了充分利用多核 CPU 架构带来的优势,可以通过启动多个 worker goroutines 来加速任务进度。如下所示的例子中启用了三十个工作协程共同承担起接收来自 channel 的待办事项列表并且独立计算最终成果再反馈回去给调用方[^2]: ```go func startWorker(workerCount int, input chan interface{}, output chan ResultType){ wg:=sync.WaitGroup{} wg.Add(workerCount) for i:=0;i<workerCount;i++{ go func(){ defer wg.Done() for task:=range input{ res:=processTask(task.(SpecificInput)) select{ case output<-res: continue default://考虑背压情况下的限流策略 time.Sleep(time.Millisecond*50) } } }() } go func(){ wg.Wait() close(output) }() } itemChan := make(chan SpecificInput ,initialBufferSize ) resultChan :=make(chan ResultType,capacityForResults ) startWorker(30,itemChan,resultChan) close(itemChan)//关闭输入源通知所有工作者停止作业 for r:= range resultChan{...}//收集汇总各个子线程产生的中间产物直至全部结束为止 ``` 以上程序框架定义了一个简单的生产者-消费者模型,其中 producer 将原始资料放入共享队列里头等待 consumer pickup 处理完毕后再交还成品。值得注意的是还需要额外安排专门负责监听整体活动状况何时彻底完结的人手及时清理现场以免造成死锁现象的发生。 #### 内存泄漏预防措施 最后不得不提到的一点就是有关于潜在存在的goroutine泄露风险问题。由于Go runtime本身并不会主动回收那些处于无限循环状态下的轻量级线程对象因此一旦出现设计缺陷就可能导致严重的后果比如不断增长的工作池数目进而引发 OOM 错误等等严重事故[^3]。为此建议采取以下几种手段加以规避: - **定期采样分析**:借助专业的第三方库如pprof等工具定时抓取当前进程中各组成部分所占比例变化趋势图谱便于快速定位异常波动位置; - **引入外部监督体系**:依靠云计算平台自带的功能模块或者自行开发后台守护进程按照预定频率轮询目标服务器上的关键指标数值绘制曲线图表辅助判断是否存在持续攀升迹象; - **严格遵循最佳实践指南**:始终记得显式声明退出信号确保每一个新开辟出来的分支都能找到回家的道路不至于迷失方向成为孤魂野鬼游荡世间久久无法消散... --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值