代码:非参数密度估计的三种python实现 (直方图,核密度估计,K近邻)

本文探讨了在数据分布未知的情况下,如何使用Python进行非参数密度估计,包括直方图、核密度估计(不同带宽设置)和K近邻方法(不同k值设定)。数据来源于特定链接,通过这些方法可以更好地理解数据的分布特征。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我们经常不知道数据是根据什么类型的函数进行分布, 此时就需要非参数密度估计的方法。 本文对同一组数据进行了三种不同的非参数密度估计, 即直方图,核密度估计,K近邻。
使用数据集:
https://download.csdn.net/download/weixin_42388833/19418489?spm=1001.2014.3001.5501

1. 直方图

计算并画出数据分布的直方图(size of bin = 0.02, 0.5, 2.0)

import numpy as np
import matplotlib.pyplot as plt
from scipy.special import logsumexp

def plot_histogram(data_set, bin_size):
    """
    compute and plot the histogram with given size of bin
    :param data_set: given data_set
    :param bin_size: given size of bin
    """
    # compute the number of bins
    bins = ((int(np.max(data_set))+1) - int(np.min(data_set))) // bin_size+1
    #plot
    plt.figure()
    plt.hist(data_set,bins = int(bins))
    plt.title(f'bin_size={bin_size}')
    plt.ylabel('times')
    plt.xlabel('data')
    plt.grid()
    plt.show()


if __name__ == '__main__':
    # load dataset
    train_data = np.loadtxt('nonParamTrain.txt')
    test_data = np.loadtxt('nonParamTest.txt')

    #3a histogram
    size_list=[0.02,0.5,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值