linux 里往表里导数语句,函数与导数中常用的函数和不等关系

前言

高考中在压轴题中考查的函数有千千万,但是总能从其中找到一些比较核心的函数来;

常用函数

比如基本初等函数$f(x)=x$和$g(x)=e^x$做四则运算得到的这些函数:

$h(x)=x\pm e^x$;

da92af050ab72dafdec3eaacf49cdbf5.png

$m(x)=x\cdot e^x$;$n(x)=\cfrac{e^x}{x}$;$r(n)=\cfrac{x}{e^x}$; 例1【2016宝鸡市二检理科第11题】若函数$f(x)=x\cdot e^x-a$有两个零点,则实数$a$的取值范围是【】

$A.(\cfrac{1}{e},+\infty)$ $B.(-\infty,\cfrac{1}{e})$ $C.(-\cfrac{1}{e},+\infty)$ $D.(-\cfrac{1}{e},0)$

分析:若熟知上图的图像,分离参数,数形结合可得正确选项为$D$。

591e9ffd48f2dc9e89c5991694cc27a1.png

比如基本初等函数$f(x)=x$和$g(x)=lnx$做四则运算得到的这些函数:

$h(x)=x\pm lnx$;

2978cb10a9bc67c1e460e5084bd955a1.png

$h(x)=x\cdot ln^x$;$h(x)=\cfrac{lnx}{x}$;

4f8079356997334c04f5cd467ef1e4c9.png

可以将他们作为导数工具的练习对象,熟练掌握他们的函数图像,有助于我们快速判断解题思路,作图时要注意因子$e^x$和$lnx$;

常用不等式

①、$e^x>x+1(x\neq 0)$

证明思路:

【法1】数形结合法,令$f(x)=e^x$,$g(x)=x+1$,在同一个坐标系中作出这两个函数的图像,

35948992d5e147766ed46ce892243ab9.png

由图像可知,当$x\neq 0$时,都满足关系$e^x>x+1$。

补充:至于函数$f(x)=e^x$和函数$g(x)=x+1$为什么会相切与点$(0,1)$,

我们可以用导数方法来解答。

【法2】作差构造函数法,令$h(x)=e^x-x-1$,则$h'(x)=e^x-1$ ,

当$x<0$时,$h'(x)<0$;当$x>0$时,$h'(x)>0$;

即函数$h(x)$在$(-\infty,0)$上单调递减,在$(0,+\infty)$上单调递增,

故函数$h(x)_{min}=h(0)=0$,故$h(x)\ge 0$,当且仅当$x=0$时取到等号,

故$x\neq 0$时,总有$h(x)>0$,即$e^x>x+1$。

②、$e^x\ge x+1$,注意没有$x\neq 0$的条件限制。

③、$lnx\leq x-1(x>0)$

证明思路:【法1】数形结合法,令$f(x)=lnx$,$g(x)=x-1$,

在同一个坐标系中作出这两个函数的图像,

8ff6b67a409a568cad55b22e54aeede4.png

由图像可知,当$x> 0$时,都满足关系$lnx\leq x-1$。

【法2】:作差构造函数法,令$h(x)=lnx-x+1(x>0)$,则$h'(x)=\cfrac{1}{x}-1$,

当$00$;当$x>1$时,$h'(x)<0$;

即函数$h(x)$在$(0,1)$上单调递增,在$(1,+\infty)$上单调递减,

故函数$h(x)_{max}=h(1)=0$,故$h(x)\leq 0$,当且仅当$x=1$时取到等号,

故$x> 0$时,总有$h(x)\leq 0$,即$lnx\leq >x-1$。

【法3】利用反函数法,此法主要基于$e^x\ge x+1$的结论,

由于函数$y=e^x$以及函数$y=x+1$关于直线$y=x$的对称函数

分别是$y=lnx$和函数$y=x-1$,故得到$lnx\leq x-1$。

【法4】:利用代数变换,由$e^x\ge x+1$,两边取自然对数得到$lne^x\ge ln(x+1)$,

即$x\ge ln(x+1)$,再用$x-1$替换$x$,得到$x-1\ge lnx$,即$lnx\leq x-1$。

不等式的变形

$e^x\ge x+1$的常见变形:

$e^x\ge x+1\xrightarrow{用x+1替换x} e^{x+1}\ge x+2 $

$\Rightarrow e^{x+2}\ge x+3 \Rightarrow e^{x+n}\ge x+n+1(n\in N^*) $

$e^{\frac{1}{3n}}>\cfrac{1}{3n}+1(等号取不到)$。

$e^x+2x-1\ge 0$的解集,利用图像求解。转化为$e^x\ge 1-2x$,做两个图像就能看出,解集为$[0,+\infty)$

$e^x+kx-1\ge 0(k>0)$的解集,利用图像求解。转化为$e^x\ge 1-kx$,做两个图像就能看出,解集为$[0,+\infty)$

$lnx\leq x-1(x>0)$的常见变形:

$x+n\ge ln(x+n+1)(x\neq 1)$

$x-1> lnx \xrightarrow{用\cfrac{1}{x}替换x} \cfrac{1}{x}-1> ln\cfrac{1}{x}$

$\Leftrightarrow \cfrac{1-x}{x}>-lnx \Leftrightarrow lnx>\cfrac{x-1}{x}=1-\cfrac{1}{x}$。

$ln\cfrac{1}{x+1}\leq \cfrac{1}{1+x}-1(x>-1) \Leftrightarrow (1+x)ln(1+x)\ge x$

当$x>0$时,$ln(x+1)

故$ln(x+1)^{\cfrac{1}{x}}<1=lne$,故$(x+1)^{\frac{1}{x}}

将此结论应用到自然数得到$(n+1)^{\cfrac{1}{n}}

用$x\Rightarrow lnx$,得到$x\geqslant lnx+1$.

典例剖析

例2【2016山东青岛一模】已知函数$f(x)=sinx-ax$,

(1).对于$x\in(0,1)$,$f'(x)>0$恒成立,求实数$a$的取值范围。

分析:利用$cosx-a>0$在$x\in(0,1)$恒成立,可以求得$a

(2).当$a=1$时,令$h(x)=f(x)-sinx+lnx+1$,求$h(x)$的最大值。

分析:此时$h(x)=lnx-x+1$,如果能知道结论$lnx\leq x-1$,

即可知$h(x){max}=h(1)=0$。或利用导数也可以求得$h(x){max}=h(1)=0$。

(3).求证:$ln(n+1)<1+\cfrac{1}{2}+\cfrac{1}{3}+\cdots+\cfrac{1}{n}(n\in N^*)$。

分析:看到这样的不等式关系,我们应该想到的有裂项相消法、数学归纳法,

法1: 由(2)的结论$lnx \leq x-1$得到$ln(x+1)\leq x(x\neq 0)$,

若将其延伸到自然数,则有$ln(n+1)

用$\cfrac{1}{n}$替换$n$,变形得到$ln(\cfrac{1}{n}+1)

即$ln(\cfrac{n+1}{n})=ln(n+1)-lnn

令此式中的$n$分别取$1,2,3,\cdots,n$,即得到以下$n$个表达式:

$ln\cfrac{2}{1}<1$;即$ln2-ln1<1$

$ln\cfrac{3}{2}

$ln\cfrac{4}{3}

$\cdots$;$\cdots$;

$ln\cfrac{1+n}{n}

$ln(n+1)-ln1<1+\cfrac{1}{2}+\cfrac{1}{3}+\cdots+\cfrac{1}{n}$,

即$ln(n+1)<1+\cfrac{1}{2}+\cfrac{1}{3}+\cdots+\cfrac{1}{n}(n\in N^*)$。

法2:可以考虑用数学归纳法,待后思考。

例3求证:$(1+\cfrac{1}{3})\cdot (1+\cfrac{1}{3^2})\cdot(1+\cfrac{1}{3^3})\cdots (1+\cfrac{1}{3^n})<2$。

证明:先用导数证明$e^x\ge x+1$,再做代换,用$\cfrac{1}{3^n}$替换$x$,

得到$e^{\frac{1}{3^n}}>\cfrac{1}{3^n}+1$;即$1+\cfrac{1}{3^n}

故$(1+\cfrac{1}{3})\cdot (1+\cfrac{1}{3^2})\cdot(1+\cfrac{1}{3^3})\cdots (1+\cfrac{1}{3^n})$

$

$=e^{\cfrac{\frac{1}{3}\cdot[1-(\frac{1}{3})^n]}{1-\frac{1}{3}}}$

$=e^{\cfrac{1}{2}(1-\cfrac{1}{3^n})}

故得证。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值