论文地址:https://arxiv.org/pdf/2107.07773.pdf
Motivation:
- 现有的dense retrieval方法虽然很有效,但是q、p在空间中的分布还是很混乱(凭嘴说),原因在于现有的模型旨在对于给定的q,拉近+document的距离,拉远-document的距离即可,但q本身的分布情况却没有关注。
- 所以需要对q也进行空间上的规划。
Method:
自然地,对原有的方法进行对称设计即可:
-
q,p均直接使用BERT进行编码

-
原有方法:固定q,listwise一正多负地引入p进行训练

-
引入对称方法:固定p,listwise一正多负地引入q进行训练

-
两者加和作为Loss:

Tips:
- 想到了q端地对称训练并实践(技术上没啥亮点)
- 工作主要集中在通过后续一系列指标证明本方法使得qp地空间向量分布更加合理
Results:
- MS Marco召回任务上较ANCE(SOTA)有略微提升
- qp在空间上地分布方差更小,通过距离可视化后证明分布更加符合预期(从召回结果出现的频率来分析)
My Thoughts:
- 实际上就是想到了q的对称训练,发现有效果
(ps:本文图片均来自于原paper,侵删)
1651

被折叠的 条评论
为什么被折叠?



