爬在NLP的大道上——More Robust Dense Retrieval with Contrastive Dual Learning

论文地址:https://arxiv.org/pdf/2107.07773.pdf

Motivation:

  1. 现有的dense retrieval方法虽然很有效,但是q、p在空间中的分布还是很混乱(凭嘴说),原因在于现有的模型旨在对于给定的q,拉近+document的距离,拉远-document的距离即可,但q本身的分布情况却没有关注。
  2. 所以需要对q也进行空间上的规划。

Method:

自然地,对原有的方法进行对称设计即可:

  1. q,p均直接使用BERT进行编码pic1

  2. 原有方法:固定q,listwise一正多负地引入p进行训练 pic2

  3. 引入对称方法:固定p,listwise一正多负地引入q进行训练pic3

  4. 两者加和作为Loss:pic4

Tips:

  1. 想到了q端地对称训练并实践(技术上没啥亮点)
  2. 工作主要集中在通过后续一系列指标证明本方法使得qp地空间向量分布更加合理

Results:

  1. MS Marco召回任务上较ANCE(SOTA)有略微提升
  2. qp在空间上地分布方差更小,通过距离可视化后证明分布更加符合预期(从召回结果出现的频率来分析)

My Thoughts:

  1. 实际上就是想到了q的对称训练,发现有效果

(ps:本文图片均来自于原paper,侵删)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>