Java获取相同字符串算法题,数据结构与算法专题——第四题 字符串相似度

这篇我们看看 最长公共子序列 的另一个版本,求字符串相似度(编辑距离),我也说过了,这是一个非常实用的算法,在DNA对比,网页聚类等方面都有用武之地。

一:概念

对于两个字符串 A 和 B,通过基本的增删改将字符串 A 改成 B,或者将 B 改成 A,在改变的过程中使用的最少步骤称之为: 编辑距离。比如如下的字符串:我们通过种种操作,痉挛之后编辑距离为3,不知道你看出来了没有?

f2a4b4e7b922f80906605776b38a3aed.png

二:解析

可能大家觉得有点复杂,不好理解,我试着把这个大问题拆分掉,将 字符串 vs 字符串,分解成 字符 vs 字符串,再分解成字符 vs 字符。

1. 字符 vs 字符

这种情况是最简单的了,比如 A 与 B 的编辑距离很显然是1。

2. 字符 vs 字符串

A 改成 AB 的编辑距离为1,A 与 ABA 的编辑距离为2。

3. 字符串 vs 字符串

ABA 和 BBA 的编辑距离为1,仔细发现可以得出如下结论,ABA 是由2^3个子序列与 BBA 字符串求的的编辑距离集合中取出的最小编辑距离,也就是说在这种情况下我们出现了重复计算的情况,我在求子序列 AB 和 BBA 的编辑距离时,我是由子序列 A 和 BBA 与 B 和 BBA 之间的编辑距离中选出一个最小值,然而序列A和序列B早之前我已经计算过了,这种重复计算的问题有点像 斐波那契,正好满足动态规划中的最优子结构和重叠子问题,所以我决定采用动态规划来解决。

三:公式

跟最长公共子序列一样,可以采用一个二维数组来保存字符串 X 和 Y 当前的位置的最小编辑距离。现有两个序列X={x1,x2,x3,...xi},Y={y1,y2,y3,....,yi}。

设一个C[i,j]: 保存Xi与Yj的当前最小的LD。

当 Xi = Yi 时,则C[i,j]=C[i-1,j-1];

当 Xi != Yi 时, 则C[i,j]=Min{C[i-1,j-1],C[i-1,j],C[i,j-1]};

最终我们的C[i,j]一直保存着最小的LD。

四:代码

using System;

namespace ConsoleApplication2

{

public class Program

{

static int[,] martix;

static string str1 = string.Empty;

static string str2 = string.Empty;

static void Main(string[] args)

{

while (true)

{

str1 = Console.ReadLine();

str2 = Console.ReadLine();

martix = new int[str1.Length + 1, str2.Length + 1];

Console.WriteLine("字符串 {0} 和 {1} 的编辑距离为:{2}\n", str1, str2, LD());

}

}

///

/// 计算字符串的编辑距离

///

///

public static int LD()

{

//初始化边界值(忽略计算时的边界情况)

for (int i = 0; i <= str1.Length; i++)

{

martix[i, 0] = i;

}

for (int j = 0; j <= str2.Length; j++)

{

martix[0, j] = j;

}

//矩阵的 X 坐标

for (int i = 1; i <= str1.Length; i++)

{

//矩阵的 Y 坐标

for (int j = 1; j <= str2.Length; j++)

{

//相等情况

if (str1[i - 1] == str2[j - 1])

{

martix[i, j] = martix[i - 1, j - 1];

}

else

{

//取“左前方”,“上方”,“左方“的最小值

var temp1 = Math.Min(martix[i - 1, j], martix[i, j - 1]);

//获取最小值

var min = Math.Min(temp1, martix[i - 1, j - 1]);

martix[i, j] = min + 1;

}

}

}

//返回字符串的编辑距离

return martix[str1.Length, str2.Length];

}

}

}

bdd508b49952878bd924350979cb5127.png

ffde6be740b2801b48924e45cba5fbb7.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值