工业锅炉计算机控制系统框图,工业燃煤锅炉计算机控制系统设计

本文探讨了工业锅炉的计算机控制问题,包括汽包水位和主蒸汽压力的模糊-PI复合控制,以及燃烧系统的最优控制。通过分析动态特性,设计了反馈加前馈的控制方案,提高了控制精度和效率。同时,研究了基于热平衡原理的经济燃烧控制,实现了燃煤锅炉的最佳风煤比,提升了热效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要:

本文研究了工业锅炉的计算机控制问题.首先分析了工业锅炉的工艺流程和特点,阐述了调节系统的任务,提出了整体控制方案. 在分析了汽包水位回路的动态特性,特别是"虚假水位"产生的原因的基础上,设计了常规PI控制器实现锅炉汽包三冲量控制系统.但是由于锅炉对象的复杂性,得到其精确数学模型比较困难,从仿真中发现,控制器的控制效果并不令人十分满意.在此基础上结合锅炉对象的特点设计了水位控制的模糊控制系统,虽然系统动态品质得到明显改善,然而系统存在稳态误差.这样综合常规PI控制器以及模糊控制器各自的优点,最后设计了Fuzzy-PI复合控制器,并引入前馈形成反馈加前馈的控制系统.从实际应用中发现其.控制效果很好,而且按同样的方法设计了主蒸汽压力Fuzzy-PI复合控制器. 对燃烧系统最优控制进行计算机仿真研究,分析了经济燃烧的原理及造成锅炉燃烧热效率低的原因,构成了模糊控制含氧量给定值的闭环次寻优控制系统.根据热平衡原理,针对锅炉燃烧系统这一复杂对象,提出了热量信号代替燃料量测量的新观点.通过实现燃煤锅炉最佳风煤比,得出提高锅炉热效率的自寻优控制方案,设计出了用于燃煤锅炉经济燃烧的计算机控制系统.,提出了一种最优控制方案——效率自寻优方法.将其结果与传统的PID控制器进行了比较,探讨了最优控制中参数变化对系统的影响. 文章的最后介绍了我们研制的SHL-20型锅炉计算机控制系统的硬件,软件的组成及程序框图.

展开

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值