Aki-Z的博客

一个分享和传播数据科学知识的博客(`・ω・´)

排序:
默认
按更新时间
按访问量

【Machine Learning, Coursera】机器学习Week7 支持向量机的应用

本节内容:SVM的参数选择、SVM解决多分类问题、实践中logistic回归和SVM的选择

2018-10-10 23:07:13

阅读数:10

评论数:0

【Machine Learning, Coursera】机器学习Week7 核函数

本节内容: 核函数(Kernel)的概念,带核函数的支持向量机

2018-10-03 18:49:35

阅读数:20

评论数:0

【Machine Learning, Coursera】机器学习Week7 支持向量机

本节内容: SVM目标函数的形式、SVM的特点

2018-09-27 23:57:15

阅读数:20

评论数:0

【Machine Learning, Coursera】机器学习Week6 机器学习系统设计

本节内容:误差分析(error analysis)

2018-09-19 15:30:06

阅读数:15

评论数:0

【Machine Learning, Coursera】机器学习Week6 偏斜数据集的处理

本节内容: 1. 查准率(precision)和召回率(recall) 2. F1 Score

2018-09-12 20:15:44

阅读数:29

评论数:0

【Machine Learning, Coursera】机器学习Week6 机器学习应用建议

本节内容:1. 训练集(training set)、交叉验证集(cross validation set)、测试集(test set) 2. 模型选择(model selection) 3. 学习曲线(learning curves)

2018-09-05 13:53:07

阅读数:71

评论数:0

【Machine Learning, Coursera】机器学习Week5 Neural Networks: Backpropagation in Practice

本节内容:1. 展开参数(unrolling parameters) 2. 梯度检验(gradient checking) 3. 随机初始化(random initialization)

2018-08-29 21:20:24

阅读数:26

评论数:0

【Machine Learning, Coursera】机器学习Week5 Neural Networks: Learning

本节内容:神经网络的代价函数及其偏导项的计算,反向传播算法(backpropagation algorithm)

2018-08-21 23:41:58

阅读数:28

评论数:0

【Machine Learning, Coursera】机器学习Week4 Neural Networks: Application

本节内容:用神经网络实现同或(XNOR)和异或(XOR)运算

2018-08-14 10:33:54

阅读数:42

评论数:0

【Machine Learning, Coursera】Week3 ex1: Logistic Regression with Python

import numpy as np import matplotlib.pyplot as plt from scipy.optimize import minimize def plotData(X,y): "&amp...

2018-08-07 18:10:51

阅读数:31

评论数:0

【Machine Learning, Coursera】Week2 ex1: Linear Regression with Python

-linearReg.py import numpy as np import matplotlib.pyplot as plt def warmUpExercise(): 'An example function that returns the 5x5 identity matri...

2018-07-31 10:38:22

阅读数:34

评论数:0

【Machine Learning, Coursera】机器学习Week4 Neural Networks: Representation

本节内容: 1. 输入层(input layer)、隐藏层(hidden layer)、输出层(output layer) 2. 偏置单元(bias unit) 3. 激励(activation)、激励函数(activation function) 4. 权重(weight) 5. 前向传播算法(...

2018-07-22 18:38:05

阅读数:39

评论数:0

gitlab和sourcetree结合使用实现代码管理

原文地址:https://blog.csdn.net/u012764358/article/details/62886427 Gitlab和Sourcetree结合使用实现代码管理 这是本人第一次发表博客,如有不足或者...

2018-07-20 23:37:21

阅读数:34

评论数:0

【Machine Learning, Coursera】机器学习Week3 Regularization

本节内容:1. 过拟合(overfitting)、欠拟合(underfitting) 2. 方差(variance)、偏差(bias) 3. 正则化(regularization)

2018-07-11 17:19:03

阅读数:36

评论数:0

windows下MongoDB的安装及配置

原文地址:https://blog.csdn.net/heshushun/article/details/77776706 一篇非常适合新手的教程,亲测有用,马住! ...

2018-07-06 15:49:08

阅读数:24

评论数:0

【Machine Learning, Coursera】机器学习Week3 Logistic Regression

本节内容:1. 逻辑回归(logistic regression)的假设函数形式和代价函数形式 2.高级优化算法(advanced optimization algorithm) 3.One-vs-all 解决多分类问题

2018-07-04 16:31:49

阅读数:62

评论数:0

【Machine Learning, Coursera】机器学习Week2 Normal Equation

本节内容:1. 正规方程(normal equation)求解参数的推导 2.梯度下降法和正规方程法的应用场合

2018-06-26 13:54:58

阅读数:73

评论数:0

【Machine Learning, Coursera】机器学习Week2 Linear Regression with Multiple Variables

本节内容:1.多元线性回归(multivariate linear regression) 2.梯度下降的应用:特征缩放(feature scaling)、学习率(learning rate)的选择

2018-06-24 00:42:40

阅读数:114

评论数:0

【Machine Learning, Coursera】机器学习Week1 Linear Regression with One Variable

本节内容:1.一元线性回归(univariate linear regression) 2.梯度下降法(gradient descent)

2018-06-13 19:52:16

阅读数:109

评论数:0

【Machine Learning, Coursera】机器学习Week1 Introduction

本节内容:机器学习(machine learning)简介

2018-06-11 22:29:11

阅读数:56

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭