Aki-Z的博客

一个分享和传播数据科学知识的博客(`・ω・´)

【Machine Learning, Coursera】机器学习Week10 大规模机器学习笔记

本节内容:随机梯度下降(Stochastic Gradient Descent)

2018-12-19 14:46:50

阅读数:41

评论数:0

【Machine Learning, Coursera】机器学习Week9 推荐系统笔记

本节内容:推荐系统(Recommender Systems),协同过滤(Collaborative Filtering)

2018-12-12 19:02:38

阅读数:88

评论数:0

【Machine Learning, Coursera】机器学习Week9 异常检测笔记

本节内容:异常检测(anomaly detection)

2018-12-05 14:04:58

阅读数:60

评论数:0

【Machine Learning, Coursera】机器学习Week8 主成分分析笔记

本节内容:降维(dimensionality reduction) 、主成分分析(principle component analysis)

2018-10-25 22:35:03

阅读数:28

评论数:0

【Machine Learning, Coursera】机器学习Week8 K均值聚类

本节内容:K均值聚类

2018-10-17 22:18:04

阅读数:32

评论数:0

【Machine Learning, Coursera】机器学习Week7 支持向量机的应用

本节内容:SVM的参数选择、SVM解决多分类问题、实践中logistic回归和SVM的选择

2018-10-10 23:07:13

阅读数:90

评论数:0

【Machine Learning, Coursera】机器学习Week7 核函数

本节内容: 核函数(Kernel)的概念,带核函数的支持向量机

2018-10-03 18:49:35

阅读数:31

评论数:0

【Machine Learning, Coursera】机器学习Week7 支持向量机

本节内容: SVM目标函数的形式、SVM的特点

2018-09-27 23:57:15

阅读数:57

评论数:0

【Machine Learning, Coursera】机器学习Week6 机器学习系统设计

本节内容:误差分析(error analysis)

2018-09-19 15:30:06

阅读数:36

评论数:0

【Machine Learning, Coursera】机器学习Week6 偏斜数据集的处理

本节内容: 1. 查准率(precision)和召回率(recall) 2. F1 Score

2018-09-12 20:15:44

阅读数:72

评论数:0

【Machine Learning, Coursera】机器学习Week6 机器学习应用建议

本节内容:1. 训练集(training set)、交叉验证集(cross validation set)、测试集(test set) 2. 模型选择(model selection) 3. 学习曲线(learning curves)

2018-09-05 13:53:07

阅读数:99

评论数:0

【Machine Learning, Coursera】机器学习Week5 Neural Networks: Backpropagation in Practice

本节内容:1. 展开参数(unrolling parameters) 2. 梯度检验(gradient checking) 3. 随机初始化(random initialization)

2018-08-29 21:20:24

阅读数:35

评论数:0

【Machine Learning, Coursera】机器学习Week5 Neural Networks: Learning

本节内容:神经网络的代价函数及其偏导项的计算,反向传播算法(backpropagation algorithm)

2018-08-21 23:41:58

阅读数:47

评论数:0

【Machine Learning, Coursera】机器学习Week4 Neural Networks: Application

本节内容:用神经网络实现同或(XNOR)和异或(XOR)运算

2018-08-14 10:33:54

阅读数:81

评论数:0

【Machine Learning, Coursera】Week3 ex1: Logistic Regression with Python

import numpy as np import matplotlib.pyplot as plt from scipy.optimize import minimize def plotData(X,y): "&amp...

2018-08-07 18:10:51

阅读数:49

评论数:0

【Machine Learning, Coursera】Week2 ex1: Linear Regression with Python

-linearReg.py import numpy as np import matplotlib.pyplot as plt def warmUpExercise(): 'An example function that returns the 5x5 identity matri...

2018-07-31 10:38:22

阅读数:46

评论数:0

【Machine Learning, Coursera】机器学习Week4 Neural Networks: Representation

本节内容: 1. 输入层(input layer)、隐藏层(hidden layer)、输出层(output layer) 2. 偏置单元(bias unit) 3. 激励(activation)、激励函数(activation function) 4. 权重(weight) 5. 前向传播算法(...

2018-07-22 18:38:05

阅读数:66

评论数:0

gitlab和sourcetree结合使用实现代码管理

原文地址:https://blog.csdn.net/u012764358/article/details/62886427 Gitlab和Sourcetree结合使用实现代码管理 这是本人第一次发表博客,如有不足或者...

2018-07-20 23:37:21

阅读数:35

评论数:0

【Machine Learning, Coursera】机器学习Week3 Regularization

本节内容:1. 过拟合(overfitting)、欠拟合(underfitting) 2. 方差(variance)、偏差(bias) 3. 正则化(regularization)

2018-07-11 17:19:03

阅读数:41

评论数:0

windows下MongoDB的安装及配置

原文地址:https://blog.csdn.net/heshushun/article/details/77776706 一篇非常适合新手的教程,亲测有用,马住! ...

2018-07-06 15:49:08

阅读数:23

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭