长江大学计算机组成原理第二版答案,2017年长江大学计算机科学与技术408计算机学科专业基础综合之计算机组成原理考研仿真模拟题...

本文探讨了全加器的构造原理,指出其可通过异或门和进位逻辑实现。对于已设计好的加法器,原变量和反变量运算均能得出正确结果。此外,介绍了浮点数运算的步骤,包括浮点乘法、除法、加法和减法,并展示了浮点运算器的逻辑结构。同时,讨论了CPU缓存效率和平均访问时间的计算方法,以及存储器组织方式如顺序和交叉存储对总线传送周期的影响。最后,详细分析了CRT显示器的缓存容量、字符发生器ROM容量以及缓存与屏幕显示位置的对应关系,并阐述了控制缓存访问与屏幕扫描同步所需的计数器及其分频关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、分析题

1. 全加器可由异或门及进位逻辑电路组成,根据这种说法对不对? 为什么?

表 全加器真值表

可以设计利用原变量或反变量进

行运算的加法器。进而可以推测,对已设计好的加法器,用原变量运算和反变量运算都是一样的。

【答案】对已设计好的加法器,用原变量运算和反变量运算都能得到正确的结果。换句话说,用原变量设计好的加法器,如果将所有的输入变量和输出变量均变反,那么该加法器就能适用于反变量的运算。因为该加法器把逻辑输入信号都反相所产生的功能仍然在这个集合之中,这可以用真值表来说明:

2. 浮点数四则运算的基本公式如下:

其中

.

算器的逻辑结构图。

【答案】浮点乘法和除法相对来说比较简单,因为尾数和阶码可以独立处理:浮点乘法只需对尾数作定点乘和阶码作定点加,而浮点除法只需对尾数作定点除和阶码作定点减即可。不论乘法和除法,需将结果规格化。

浮点加减法较复杂,原因在于尾数相加或减之前必须对阶。为此,将较小的阶码X 。

对应的尾数

右移

位以得到一个新的尾数

.

这样就能与

进行运算。因

此浮点加减法需要四步运算:

第 2 页,共 29 页

试画出浮点运

(1)计算(2)将

(3)计算

; (定点减法)位以形成.

; (定点加法或减法)

(4)将结果规格化。

图为浮点运算器的结构图。该运算器由两个相对独立的定点运算器组成。阶码部件只进行加、减操作,

实现对阶(求阶差)和阶码加减法操作部件完成。寄存器

尾数部分可进行加、减、乘、除运算,

并与阶码部件协同完成对阶和规格化等功能。尾数的加、减由加法器完成,尾数乘除由高速乘除

和积商寄存器本身具有移位功能,以便完成对阶和规格化等操作。

3. CPU 执行一段程序时,cache 完成存取的次数为3800次,主存完成存取的次数为200次,已知cache 存取周期为50ns , 主存为250ns ,求cache-主存系统的效率和平均访问时间。

【答案】cache 的命中率

cache-主存系统效率e 为

平均访问时间

4. 设存储器容量为32字,字长64位,模块数m=4, 分别用顺序方式和交叉方式进行组织。存储周期T=200nS, 数据总线宽度为64位,总线传送周期各是多少?

【答案】信息总量:q :64位x4=256位顺序存储器与交叉存储器读出4个字的时间分别是:

第 3 页,共 29 页

问顺序存储器和交叉存储器的带宽

则顺序存储器带宽为

交叉存储器带宽为

5. 某CRT 显示器可显示128种ASCII 字符,每帧可显示80字×25排;每个字符字形采用7×8点阵,即横 向7点,字间间隔1点,纵向8点,排间间隔6点;帧频50Hz ,采取逐行扫描方式。问:

(1)缓存容量有多大?

(2)字符发生器(ROM )容量有多大?

(3)缓存中存放的是字符ASCII 代码还是点阵信息? (4)缓存地址与屏幕显示位置如何对应?

(5)设置哪些计数器以控制缓存访问与屏幂扫描之间的同步? 它们的分频关系如何? 【答案】CRT 显示器缓存与屏幕显示间的对应关系: (1)缓存容量(2)ROM 容量

(3)缓存中存放的是待显示字符的ASCII 代码。

(4)显示位置自左至右,从上到下,相应地缓存地址由低到高,每个地址码对应一个字符显示位置。

(5)①点计数器(7+1): 1分频(每个字符点阵横向7个点,间隔1个点)。

②字符计数器(80+12): 1分频(每一水平扫描线含80个字符,回归和边缘部分等消隐段折合成12个字符 位置)。

③行计数器(8+6): 1分频(每行字符占8点,行间隔6点)。 ④排计数器(25+10): 1分频(每帧25行,消隐段折合为10行)。

6. 某机字长16位,使用四片74181组成算术/逻辑运算单元,设最低位序号标注为第0位。

(1)写出第5位的进位信号(:6的逻辑表达式; (2)估算产生

所需的最长时间;

(3)估算最长求和时间。

【答案】(1)组成最低四位的74181进位输出为

为向第0位进位

其中

.

所以

(2)设标准门延迟时间为T , “与或非”门延迟时间为1.5T ,产生

第 4 页,共 29 页

的路径应当从74181最下

内容概要:《2024中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京深圳在总指数中名列前茅,分别以91.2684.53的得分领先,展现出强大的资金投入、创新能力基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求技术进步共同推动了低空经济的快速发展,预计到2026市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业研究人员。 使用场景及目标:①了解低空经济的定义、分类发展驱动力;②掌握低空经济的主要应用场景市场规模预测;③评估各城市在低空经济发展中的表现潜力;④为政策制定、投资决策企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设区域融合错位的重要性,提出了加强法律法规建设、人才储备基础设施建设等建议。低空经济正加速向网络化、智能化、规模化集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
数据集一个高质量的医学图像数据集,专门用于脑肿瘤的检测分类研究以下是关于这个数据集的详细介绍:该数据集包含5249张脑部MRI图像,分为训练集验证集。每张图像都标注了边界框(Bounding Boxes),并按照脑肿瘤的类型分为四个类别:胶质瘤(Glioma)、脑膜瘤(Meningioma)、无肿瘤(No Tumor)垂体瘤(Pituitary)。这些图像涵盖了不同的MRI扫描角度,包括矢状面、轴面冠状面,能够全面覆盖脑部解剖结构,为模型训练提供了丰富多样的数据基础。高质量标注:边界框是通过LabelImg工具手动标注的,标注过程严谨,确保了标注的准确性可靠性。多角度覆盖:图像从不同的MRI扫描角度拍摄,包括矢状面、轴面冠状面,能够全面覆盖脑部解剖结构。数据清洗筛选:数据集在创建过程中经过了彻底的清洗,去除了噪声、错误标注质量不佳的图像,保证了数据的高质量。该数据集非常适合用于训练验证深度学习模型,以实现脑肿瘤的检测分类。它为开发医学图像处理中的计算机视觉应用提供了坚实的基础,能够帮助研究人员开发人员构建更准确、更可靠的脑肿瘤诊断系统。这个数据集为脑肿瘤检测分类的研究提供了宝贵的资源,能够帮助研究人员开发出更准确、更高效的诊断工具,从而为脑肿瘤患者的早期诊断治疗规划提供支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值