ViT (Vision Transformer) ---- RNN

1.one to one 模型

如何对时序数据建模?

人类大脑在阅读时,并不是把一段文字看完在思考,而是边思考变阅读,随着看完后就积累了整段文字的大意,因此处理时序数据就不能使用one to one 模型

什么是one to one模型?

  一个输入对应一个输出,例如输入一张图片,输出类别概率值,one to one 适应图片,但是不适应文件,因为文本的输入不固定,输出也不固定,一句话可长可短,翻译时输出也是可长可短,

因此one to one模型不适合时序数据,适合时序数据的模型应该是 many to many 或者 many to one,RNN就是这样的模型

rnn的ht和人的大脑很类似,人的大脑随着阅读会积累信息,那么ht也会随着输入积累序列的信息

h_0 只积累了输入x_0的信息,h_1积累了输入x_0和x_1的信息,,,,h_t积累了输入的x_0、x_1、x_2、、、x_t的信息,注意这里的rnn只有一个参数A,无论链多长,只有一个参数A,A的参数开始是随机初始化,利用训练数据学习A的参数

2.Simple RNN

  1. 简单的simple RNN可以发现输入和输出以及参数之间的关系,首先输入是有两部分组成,输入的x_t和上一个输出的状态h_t-1的concat链接,A矩阵就是RNN的需要学习的矩阵,tanh是激活函数,h_t是当前的输出

2.这里在获取状态前需要经过tanh激活函数,没有激活函数是否可以?答案是不可以

因为如果没有激活函数,多层后,输出的状态值要么爆炸,要么为0,使用激活的目的就是对数据进行正则化,使其规范到0到-1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值