ViT (Vision Transformer) ---- Transformer Model(2)

上一节详细的介绍了transform的组件,本节就通过组件进行组装transform

Self-attention层:

简化:

多头self-attention

上面是单头self-attention,由单个的self-attention组成多头self-attention,如下:

使用n个单头self-attention,不共享参数,进行堆叠,把输出的上下文C进行concat连接

假如单头的self-attention的输出是d维向量,输出m个上下文C,那么组成的矩阵为dxm的C向量

多头的组成的向量为(n*d)xm如下:

多头attention

Stacked Self-Attention Layers

Self-Attention Layer + Dense Layer

多个多头self-attention

形成编码器模块

解码器

Stacked Attention Layers

Transform

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值