matlab inviter,文再文 教授:Block algorithms with augmented Rayleigh-Ritz projections for large-scale eige...

Abstract: Iterative algorithms for computing eigenpairs of large matrices consist of two main steps: a subspace update step and a Rayleigh-Ritz (RR) step. In this paper, we propose an augmented Rayleigh-Ritz (ARR) step that can provably accelerate convergence under mild conditions. We consider two block (as opposed to Krylov subspace) algorithms by coupling the ARR procedure with two subspace update schemes: (i) the classic power method applied to multiple vectors without periodic orthogonalization, and (ii) a recently proposed Gauss-Newton method. In block algorithms, the RR step is arguably the bottleneck in scalability as the number of computed eigenpairs increases. Our key design objective is for the algorithms to approach a certain optimal scalability under favorable conditions. That is, to attain a sufficient accuracy, they should call the Rayleigh-Ritz step as few times as possible (ideally only once), while the subspace update step should be close to being embarrassingly parallel under suitable data mapping schemes. We perform extensive computational experiments in Matlab (without explicit code parallelization) to evaluate the proposed algorithms in comparison to a few state-of-the-art eigensolvers. Numerical results show strong potentials for the proposed algorithms to reach high levels of scalability on a representative set of test problems.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值