-
总结一下:导数;连续;左右导数
导数存在,必然连续,连续不一定可导,但不连续一定不可导,但是不可导不一定左右导数都不存在,在某点处左连续左导数存在,在某点处右连续右导数存在,该处左导数等于右导数(左右极限相等)称可导,所以左右导数都存在,不一定连续,一个不存在,一定不连续。
-
微分中值定理中强调的"闭区间内连续,开区间内可导"
“可导一定连续”的意思是指函数y=f(x)在点x处可导,则函数在该点连续。
但“在闭区间[a,b]上可导"是指f(x)在开区间(a,b)内可导,且f(x)在点a的右导数和在点b的左导数存在。
“在闭区间[a,b]上连续"是指f(x)在开区间(a,b)内连续,且f(x)在点a右连续和在点b左连续。
在点a右连续是指f(x)在点a的右导数存在且右极限等于f (a)。
条件“在闭区间[a,b]上可导"仅能说明f(x)在点a的右导数存在,左导数存不存在不晓得,所以端点处可能不可导。所以,条件“在闭区间[a,b]上可导"推不出条件“在闭区间[a,b]上连续”。