线性相关的本质

本质就是抓牢“多余”

定理是“死”的。但从空间里看线性相关和线性无关,向量就“活”了,定理也就“活”了


  • 重要的三句话和一张图(不要随便扩充)

1.以少表多,多的相关(严格少)
2.部分相关,整体相关;整体无关,部分无关
3.高维无关,低维无关;低维相关,高维相关


  • 定义


  • 线性相关

一组向量中,至少有一个是多余的,没有对张成空间做出任何贡献,并且可以移除其中一个而不减少张成的空间,当这种情况发生时,称它们是“线性相关”的。

按照多余的思想,那么含有零向量有成比例的向量的向量组必线性相关

另一种表述方法是其中一个向量,可以表示为其它向量的线性组合,因为这个向量已经落在其它向量的张成空间中


  • 线性无关

如果所有向量都给张成的空间增添了新的维度,它们就被称为是“线性无关”的。

一维直线增到二维平面
二维平面增到三维空间

因此,单个非0向量两个不成比例的向量均线性无关。


  • 理解线性相关性的部分定理

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值