向量组


  • 向量组的向量添加分量(增维)和向量组增加向量

增加维度:高维相关低维相关,低维无关高维无关

增加向量:原来无关,增加后,若能α能由其余向量线性表示且表示法唯一,则增加后线性相关;若不能则无关(总之不一定)。原来相关,增加一个向量后,向量组还是线性相关,只不过它不一定能被其余向量线性表示。原来无关减少一个向量后,还是无关。原来相关减少一个向量后,若减少的是那个唯一能被其余向量线性表示的向量,则减少后无关;否则线性相关。


  • 向量组的线性表出与线性相关


  • 行阶梯(求极大无关组成员个数)

  • 行最简(极大无关组表示其余向量)


  • 求向量组的秩,所有极大线性无关组,并将其余的向量用极大线性无关组线性表出

1.矩阵初等行变换化成行阶梯矩阵
2.把所有阶梯上的,所在列向量取 秩的个数个
3.然后重新组成一个矩阵,重新画一画阶梯,看看阶梯数是否依旧等于秩的个数,是的话,这些个向量组就是一个极大无关线性组,否则就不是啦

所以直接取行阶梯矩阵每行第一个非0所在列所组成的新矩阵,阶梯数一定等于新矩阵的秩的个数,就一定是原矩阵的一个极大线性无关组。

  • 注意点:

1.only求秩的时候,可行列混合变换,求解;其他情况都只能用单一行变换或者列变换求到底。
2.行阶梯到行最简的时候,不要使用列变换!!!
3.🔺有些新矩阵可以重新再行变换一下,就又是秩等于原矩阵的秩了,所以也是的,不要遗漏。


  • 秩的不等式


  • 判断/证明正确命题(难点)

定理一:向量组 α1,α2,α3,α4.....αn(n>=2)线性相关的充要条件:向量组中至少有一个向量可由其余的n-1个向量线性表出。

方法1:举反例
方法2:反证法/逆否命题
方法3:定义法(同乘/带入重组)
方法4:秩
方法5:Ax=0,x解的情况


  • 判断向量组是否线性相关/线性无关

n>m时

方法1:n个m维向量,线性无关

n=m时

方法1:以少表多,多的相关
方法2:凑系数
方法3:Ax=0,x是否只能是0解
方法4:|A|=0?线性相关(低阶)
方法5:化行阶梯,满秩?(高阶/非方阵)

n<m时

方法1:化行阶梯,打假,讨论秩
方法2:定理六,七(部分...,高维...)
方法3:以少表多,多的相关


  • 抽象向量组判断线性表出,等价矩阵,等价向量组

问题1:初等行变换不改变行向量的线性相关性,初等列变换不改变列的线性相关性?对

A的行秩=A的列秩=矩阵的秩
初等行变换不改变行向量组的秩,初等列变换不改变列向量组的秩→初等行,列变换不改变矩阵的秩→初等变换不改变矩阵行列向量组的线性相关性

问题2:单个矩阵初等变换后,其行列向量组一定等价吗?一定。

问题3:矩阵A通过初等列(行)变换变成矩阵B,那么A,B的列(行)向量组等价吗?一定。

问题4:矩阵A通过初等行列混合变换变成矩阵B,那么A,B的行(列)向量组一定等价吗?不一定。

如图:B的1,3行(列)不能用A,的行(列)向量线性表示,故不等价


  • 正交规范化,正交矩阵


  • 向量空间

✋→ 补充理解篇—向量空间

日常简单三问:
1.某某到某某的过渡矩阵
2.A基下的坐标和B基下的坐标
3.求一个向量,使它在两组基下有相同坐标


  • 1
    点赞
  • 0
    评论
  • 3
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 像素格子 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值