CLIP-Adapter: Better Vision-Language Models with Feature Adapters

本文探讨了如何通过CLIPAdapter在预训练的CLIP模型基础上进行适应性调整,特别是在视觉和语言分支上。方法涉及添加瓶颈层学习新特征并防止过拟合,重点介绍了ClassifierWeightGeneration和残差连接的应用。同时,文章介绍了hard-prompt和soft-prompt的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对比语言图像预训练(CLIP)

虽然prompt-tuning用于textual inputs,但是建议CLIP Adapter在视觉或语言分支上使用功能适配器进行fine-tune

CLIPAdapter采用了一个额外的瓶颈层来学习新的特征并将剩余的特征与原始的预训练特征进行混合。

为了更好地适应vision语言模型,使用功能适配器,而不是快速调整

1. Classifier Weight Generation for Few-Shot Learning

Co0P方法

a classifier weight matrix W(D,K),D维度,K类别分类,得到K-维度 logit

hard-prompt,pre-defined hard prompt template H.

soft-prompt,random-initialized learnable soft tokens


2. CLIP Adapter

只在CLIP的语言图像分支上附加少量可学习的瓶颈线性层,在few-shot , fine-tuning期间,保持原始clip主干冻结。

然而,使用附加层进行简单的微调在few-shot中仍然可能会陷入过度拟合。为了解决过拟合问题,提高CLIP-Adapter的鲁棒性,进一步采用残差连接,将微调后的知识与CLIP主干中的原始知识动态融合

image feature f , classifier weight W

CLIP-Adapter是一篇名为"CLIP-Adapter: Better Vision-Language Models with Feature Adapters"的论文提出的方法。\[1\]该方法通过引入两个可学习的特征适配器Av(⋅)和At(⋅),对视觉特征f和文本特征W进行线性变换。这些适配器通过残差连接与预训练的CLIP模型相结合,以避免遗忘原始知识。\[2\]CLIP-Adapter的主要工作是在视觉或语言分支上使用函数Adapter进行微调,以实现更好的视觉语言模型。具体来说,CLIP-Adapter引入了一个额外的瓶颈层来学习新特征,并执行与原始预训练特征的残差样式特征混合。\[3\]通过这种方式,CLIP-Adapter提供了一种替代prompt tuning的路径来改进视觉语言模型的性能。 #### 引用[.reference_title] - *1* *3* [CLIP-Adapter:利用Adapter微调CLIP适配下游任务](https://blog.csdn.net/weixin_44936889/article/details/120789500)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [CLIP-Adapter: Better Vision-Language Models with Feature Adapters](https://blog.csdn.net/weixin_48907099/article/details/131488484)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值