1阶/2阶低通滤波器及1阶低通滤波器brickwall factor推导

1阶低通滤波器的传递函数:

A(s)=A_m\frac{1}{1+s/\omega _p}=A_m\frac{1}{1+\frac{jf}{f_0}}

传递函数的增益模为:

\left | A(s) \right |=A_m\frac{1}{\sqrt{1+\frac{f^{2}}{f_0^{2}}}}

当频率较低时,增益幅值为Am。当频率为无穷大时,增益幅值接近于0。这符合低通滤波器的特性。频率增大到f=f_0的时候,增益变为0.707A_m, 此时的频率就是截止频率f_h,也是特征频率f_0. 从截止频率往后,增益幅值以-20dB/decade倍频的速率下降。

输入输出相移为:

\varphi (f)=-\tan^{-1}(\frac{f}{f_0})

f=0时,相移为0. 随着频率的增加,当f=f_0时,相移为-45^{\circ}. 当频率逼近无穷大时,相移接近-90^{\circ}.

1阶滤波器一般不涉及复杂的数学计算,简单易用。在很多场合具有广泛的应用,如果涉及更高的要求,这时就需要设计高阶滤波器。1阶低通滤波器在频率大于截止频率后,增益幅值以Q-20dB/dec倍频的速率下降,那么2阶低通滤波器就可以实现-40dB/dec倍频的速率下降,而3阶低通滤波器就可以以-60dB/dec倍频的速率下降,阶数越高,增益幅值曲线越接近砖墙滤波器。1阶滤波器和2阶滤波器都是高阶滤波器的基础,高阶滤波器一般由一个1阶滤波器和若干个2阶滤波器级联组成。

2阶低通滤波器的传递函数为:

A(s)=A_m*\frac{1}{1+as+s^{2}}=A_m*\frac{1}{1+a\frac{j\omega }{\omega _0}+(\frac{j\omega }{\omega _0})^{2}}=A_m*\frac{1}{1+a\frac{jf }{f _0}+(\frac{jf }{f _0})^{2}}

当频率为0时,\left | A(jf) \right |=A_m, 为中频增益。当频率接近无穷大时,分母有一个无穷大的虚部,然后一个无穷大的平方,\left | A(jf) \right |\approx 0, 这符合低通滤波的特性。

f=f_0时,传函的分母只剩下一个虚部,实部为0。这是全部频率范围内最特殊的一点,称为特征频率。特征频率的定义可以是:在2阶滤波器中,使得分母实部为0的频率点。

\left | A(f_0) \right |=\left | A_m\frac{1}{1+a\frac{jf_0}{f_0}+(\frac{jf_0}{f_0})^{2}} \right |=A_m\frac{1}{a}

定义品质因数Q为:特征频率处的增益模除以中频增益。

Q=\frac{\left | A(jf_0) \right |}{A_m}=\frac{1}{a}

所以2阶低通滤波器的传递函数可写为:A(jf)=A_m\frac{1}{1+\frac{1}{Q}(\frac{jf}{f_0})+(\frac{jf}{f_0})^{2}}

品质因数的改变会给标准2阶低通滤波器带来不一样的特性,Q值不同,频率特性也不同。

以0.707为界,品质因数大于0.707的称为切比雪夫滤波器,品质因数小于0.707的称为贝塞尔滤波器,品质因数恰好等于0.707的称为巴特沃斯滤波器。巴特沃斯滤波器最为明显的特征是它的特征频率正好等于它的截止频率f_c.当输入信号的频率为f_0时,它对应的增益模为中频增益的0.707倍。它具有最为平坦的通带区间,过渡带下降速率一般。由于参数唯一,设计方便,应用比较广泛。切比雪夫滤波器在频率为f_0的时候,增益模大于0.707倍中频增益,可以是1或者大于1. 它具有最为陡峭的过渡带,因此与砖墙式滤波器最像。但是在通带内,它的增益具有隆起,Q值越大,隆起越严重。贝塞尔滤波器在频率为f_0的时候,增益模小于0.707倍中频增益。从通带到阻带最为缓慢,与理想的砖墙滤波器也相差最远。看起来像是没什么优点,但是其实不然,贝塞尔滤波器具有最大的线性相移区间,可以减少复合波形的相位失真。

用Q值和特征频率f_0表示截止频率f_c:

假设K=\frac{f_c}{f_0}, 那么\left | A(jf_c) \right |=\left | A_m\frac{1}{1+\frac{1}{Q}(\frac{jf_c}{f_0})+(\frac{jf_c}{f_0})^{2}} \right |=\frac{1}{\sqrt{2}}A_m

此式求解出来得到:K=\frac{\sqrt{4Q^{2}-2+\sqrt{4-16Q^{2}+32Q^{4}}}}{2Q}

对于2阶低通滤波器,Q值定了,那么截止频率和特征频率的比值是唯一确定的。

切比雪夫滤波器的截止频率大于特征频率,贝塞尔滤波器的截止频率小于特征频率。

理想的低通滤波器类似于砖墙一般,在截止频率之后的增益模为0,截止频率f_c之前的增益模为中频增益A_m. 其随频率变化曲线如下图中蓝色曲线所示。而1阶低通滤波器在截止频率之前基本不变,截止频率之后以-20dB/10倍频的速率下降,如图中红色曲线所示。

在实际应用中,有时候需要估算带宽内的总噪声,使用等效砖墙带宽可以快速进行计算。这里我们进行1阶低通滤波器的等效砖墙带宽的推导,得到1阶低通滤波的砖墙系数:

\int_{f_1}^{f_2}A_m^{2}\frac{1}{1+(\frac{f}{f_0})^{2}}df=\int_{0}^{bw_eff}A_m^{2}df

f_1=0,f_2=infinite等式左边等于

A_m^{2}*f_c*(arctan(\frac{f_2}{f_c})-arctan(\frac{f_1}{f_c}))=A_m^{2}*f_c*(arctan(\frac{infinite}{f_c})-arctan(\frac{0}{f_c}))=A_m^{2}*f_c*\frac{\pi }{2}\displaystyle

等式右边等于

A_m^{2}*bw_eff

因此得到 bw_eff=1.57f_c, 1阶低通滤波器的砖墙系数为1.57.

其他高阶的低通滤波的砖墙系数如下表,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值