分治算法详解和实例解析

本文深入探讨了分治算法的基本思想、步骤,并通过多个经典例子如二分搜索、大整数乘法、合并排序等进行阐述。同时,详细解析了如何用分治法解决最大连续子数组和的问题,与动态规划、贪心策略进行对比。此外,还介绍了二分查找和大整数乘法的高效解决方案。
摘要由CSDN通过智能技术生成

分治法的设计思想是:将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。

一,基本思想和概念

把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。

二,分治算法的步骤

1,将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题。

2,若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题。

3,将各个子问题的解合并为原问题的解。

三,分治算法的例子

(1)二分搜索

(2)大整数乘法

(3)Strassen矩阵乘法

(4)棋盘覆盖

(5)合并排序

(6)快速排序

(7)线性时间选择

(8)最接近点对问题

(9)循环赛日程表

(10)汉诺塔

(11)最大连续子数组的和

四,分治算法的实例

1,求最大连续子数组的和

Leetcode53题

常见解法 时间复杂度 空间复杂度
暴力解法 O(N^2) O(1)
分支算法 O(NlogN) O(logN)
动态规划 O(N) O(1)
暴力解法:时间超时

                
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值