分治法的设计思想是:将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。
分治算法详解和实例解析
一,基本思想和概念
把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。
二,分治算法的步骤
1,将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题。
2,若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题。
3,将各个子问题的解合并为原问题的解。
三,分治算法的例子
(1)二分搜索
(2)大整数乘法
(3)Strassen矩阵乘法
(4)棋盘覆盖
(5)合并排序
(6)快速排序
(7)线性时间选择
(8)最接近点对问题
(9)循环赛日程表
(10)汉诺塔
(11)最大连续子数组的和
四,分治算法的实例
1,求最大连续子数组的和

| 常见解法 | 时间复杂度 | 空间复杂度 |
|---|---|---|
| 暴力解法 | O(N^2) | O(1) |
| 分支算法 | O(NlogN) | O(logN) |
| 动态规划 | O(N) | O(1) |

本文深入探讨了分治算法的基本思想、步骤,并通过多个经典例子如二分搜索、大整数乘法、合并排序等进行阐述。同时,详细解析了如何用分治法解决最大连续子数组和的问题,与动态规划、贪心策略进行对比。此外,还介绍了二分查找和大整数乘法的高效解决方案。
最低0.47元/天 解锁文章
404

被折叠的 条评论
为什么被折叠?



