洛谷P3327 [SDOI2015]约数个数和 莫比乌斯反演+整除分块+线性筛


洛谷P3327 [SDOI2015]约数个数和


标签

  • 莫比乌斯反演
  • 整除分块
  • 线性筛

前言

  • 这里的整除分块是另一种常见的形式。我半天都没搞清楚是怎么分的…好久之后才恍然大悟

简明题意

  • d ( x ) d(x) d(x)表示 x x x的约数个数。给定 n , m n,m n,m,求
    ∑ i = 1 n ∑ j = 1 m d ( i ∗ j ) \sum_{i=1}^n\sum_{j=1}^md(i*j) i=1nj=1md(ij)

思路

  • 首先大家应该知道这样一个很常用的式子:
    d ( i ∗ j ) = ∑ x ∣ i ∑ y ∣ j [ g c d ( x , y ) = = 1 ] d(i*j)=\sum_{x|i}\sum_{y|j}[gcd(x,y)==1] d(ij)=xiyj[gcd(x,y)==1]

这个式子记住就好

  • 我们用这个式子计算 d ( i , j ) d(i,j) d(i,j),得出原式等于:
    ∑ i = 1 n ∑ j = 1 m d ( i j ) = ∑ i = 1 n ∑ j = 1 m ∑ x ∣ i ∑ y ∣ j [ g c d ( x , y ) = = 1 ] \sum_{i=1}^n\sum_{j=1}^md(ij)=\sum_{i=1}^n\sum_{j=1}^m\sum_{x|i}\sum_{y|j}[gcd(x,y)==1] i=1nj=1md(ij)=i=1nj=1mxiyj[gcd(x,y)==1]
  • x , y x,y x,y i , j i,j i,j的因数,暴力计算因数复杂度太高了,我们去枚举 x , y x,y x,y,显然 n , m n,m n,m的约数分别最大不超过 n , m n,m n,m,因此,原式变成:
    ∑ x = 1 n ∑ y = 1 m ( [ n x ] [ m y ] [ g c d ( x , y ) = = 1 ] ) \sum_{x=1}^n\sum_{y=1}^m\left([\frac nx][\frac my][gcd(x,y)==1]\right) x=1ny=1m([xn][ym][gcd(x,y)==1])
  • 对于 [ g c d ( x , y ) = = 1 ] [gcd(x,y)==1] [gcd(x,y)==1]我们很快能想到用莫比乌斯函数性质替换成 ∑ d ∣ g c d ( i , j ) μ ( d ) \sum\limits_{d|gcd(i,j)}\mu(d) dgcd(i,j)μ(d),而又有这样的性质: d ∣ g c d ( i , j )    ⟺    d ∣ i 且 d ∣ j d|gcd(i,j)\iff d|i 且d|j dgcd(i,j)didj 于是就成了:
    ∑ i = 1 n ∑ j = 1 m ( [ n i ] [ m j ] ∑ d ∣ i 且 d ∣ j μ ( d ) ) \sum_{i=1}^n\sum_{j=1}^m\left([\frac ni][\frac mj]\sum\limits_{d|i且d|j}\mu(d)\right) i=1nj=1m[in][jm]didjμ(d)
  • 换了之后就可以改为枚举 d d d d d d作为 n n n的约数,显然 d d d的上限是 n n n。就成了:
    ∑ d = 1 n μ ( d ) ∑ i = 1 n ∑ j = 1 m ( [ d ∣ i 且 d ∣ j ] ∗ [ n i ] ∗ [ m j ] ) \sum_{d=1}^n\mu(d)\sum_{i=1}^n\sum_{j=1}^m\left([d|i且d|j]*[\frac ni]*[\frac mj] \right) d=1nμ(d)i=1nj=1m([didj][in][jm])
  • 又有
    ∑ i = 1 n ∑ j = 1 m ( [ d ∣ i 且 d ∣ j ] ∗ [ n i ] ∗ [ m j ] ) = ∑ i = 1 [ n d ] ∑ j = 1 [ m d ] [ n i d ] ∗ [ m j d ] \sum\limits_{i=1}^n\sum\limits_{j=1}^m\left([d|i且d|j]*[\frac ni]*[\frac mj]\right)=\sum\limits_{i=1}^{[\frac nd]}\sum\limits_{j=1}^{[\frac md]}[\frac n{id}]*[\frac m{jd}] i=1nj=1m([didj][in][jm])=i=1[dn]j=1[dm][idn][jdm]

推导:我们可以发现, ∑ i = 1 n ∑ j = 1 m [ d ∣ i 且 d ∣ j ] \sum\limits_{i=1}^n\sum\limits_{j=1}^m[d|i且d|j] i=1nj=1m[didj],实际有效的二元组 ( i , j ) (i,j) (i,j),跟 ∑ i = 1 [ n d ] ∑ j = 1 [ m d ] \sum\limits_{i=1}^{[\frac nd]}\sum\limits_{j=1}^{[\frac md]} i=1[dn]j=1[dm]所枚举的二元组 ( i , j ) (i,j) (i,j)在数量上是一样多的。在数值上,前者二元组的大小是后者的 d d d倍。因此,变换上限后, i , j i,j i,j成为了原来的 1 d \frac 1d d1,我们给它们乘上 d d d就回到原来的项了。

  • 接下来,原式就会变成:
    ∑ d = 1 n μ ( d ) ∑ i = 1 [ n d ] ∑ j = 1 [ m d ] [ n i d ] ∗ [ m j d ] \sum_{d=1}^n\mu(d)\sum\limits_{i=1}^{[\frac nd]}\sum\limits_{j=1}^{[\frac md]}[\frac n{id}]*[\frac m{jd}] d=1nμ(d)i=1[dn]j=1[dm][idn][jdm]
  • 这个时候,对于后面的式子 ∑ i = 1 [ n d ] ∑ j = 1 [ m d ] [ n i d ] ∗ [ m j d ] \sum\limits_{i=1}^{[\frac nd]}\sum\limits_{j=1}^{[\frac md]}[\frac n{id}]*[\frac m{jd}] i=1[dn]j=1[dm][idn][jdm]显然是可以通过移项改成两项相乘: ∑ i = 1 [ n d ] [ n i d ] ∑ j = 1 [ m d ] [ m j d ] \sum\limits_{i=1}^{[\frac nd]}[\frac n{id}]\sum\limits_{j=1}^{[\frac md]}[\frac m{jd}] i=1[dn][idn]j=1[dm][jdm],然后原式就成了:
    ∑ d = 1 n μ ( d ) ∑ i = 1 [ n d ] [ n i d ] ∑ j = 1 [ m d ] [ m j d ] \sum_{d=1}^n\mu(d)\sum\limits_{i=1}^{[\frac nd]}[\frac n{id}]\sum\limits_{j=1}^{[\frac md]}[\frac m{jd}] d=1nμ(d)i=1[dn][idn]j=1[dm][jdm]
  • 这里观察 ∑ i = 1 [ n d ] [ n i d ] ∑ j = 1 [ m d ] [ m j d ] \sum\limits_{i=1}^{[\frac nd]}[\frac n{id}]\sum\limits_{j=1}^{[\frac md]}[\frac m{jd}] i=1[dn][idn]j=1[dm][jdm]是可以预处理的。这里有一个小难点,就是这里未知的既有 d d d,又有 n , m n,m n,m,预处理需要枚举 d , n , m d,n,m d,n,m,那复杂度岂不是 O ( n 3 ) O(n^3) O(n3)了?大家应该摒弃这种观念,思维不能定势。首先我们并不需要直接对 ∑ i = 1 [ n d ] [ n i d ] ∑ j = 1 [ m d ] [ m j d ] \sum\limits_{i=1}^{[\frac nd]}[\frac n{id}]\sum\limits_{j=1}^{[\frac md]}[\frac m{jd}] i=1[dn][idn]j=1[dm][jdm]这整个式子预处理,可以分开对 ∑ i = 1 [ n d ] [ n i d ] \sum\limits_{i=1}^{[\frac nd]}[\frac n{id}] i=1[dn][idn] ∑ j = 1 [ m d ] [ m j d ] \sum\limits_{j=1}^{[\frac md]}[\frac m{jd}] j=1[dm][jdm]预处理,所以现在枚举的又可以减少为 d , m d,m d,m两种了,复杂度 O ( n 2 ) O(n^2) O(n2)。但是现在注意观察, n d nd nd在整个式子里都是一个整体,他们整体取值的范围是确定的。因此可以直接枚举 n d \frac nd dn,这样预处理复杂度就是 O ( n n ) O(n\sqrt n) O(nn ),总复杂度就是: O ( n n + n ∗ T ) O(n\sqrt n+n*T) O(nn +nT)
  • 但是,这里有复杂度更低的方法,我们令 f ( x ) = ∑ i = 1 x [ x i ] f(x)=\sum\limits_{i=1}^x[\frac xi] f(x)=i=1x[ix],然后原式就变成:
    ∑ d = 1 n ( μ ( d ) ∗ f ( [ n d ] ) ∗ f ( [ m d ] ) ) \sum_{d=1}^n\left(\mu(d)*f([\frac nd])*f([\frac md])\right) d=1n(μ(d)f([dn])f([dm]))
  • f f f的任意项是可以通过前面所说的预处理出来,从而 O ( 1 ) O(1) O(1)查询。但是,这里注意到 [ n d ] [\frac nd] [dn] [ m d ] [\frac md] [dm]是可以分块的,也就是对于一块 [ l , r ] [l,r] [l,r],这个区间的 [ n d ] [\frac nd] [dn] [ m d ] [\frac md] [dm]是确定的,也就是说这个区间的 f ( [ n d ] ) ∗ f ( [ m d ] ) f([\frac nd])*f([\frac md]) f([dn])f([dm])是确定的。所以只需要用这个区间的 f ( [ n d ] ) ∗ f ( [ m d ] ) f([\frac nd])*f([\frac md]) f([dn])f([dm])乘以 μ ( d ) \mu(d) μ(d)区间和就可以了,最终复杂度降低为 O ( n n + n ∗ T ) O(n\sqrt n+\sqrt{n}*T) O(nn +n T),可以通过这一题
  • 其实还可以再做一个小优化。之前我们定义了 f ( x ) = ∑ i = 1 x [ x i ] f(x)=\sum\limits_{i=1}^x[\frac xi] f(x)=i=1x[ix],如果数论比较好的同学可以立马发现, f ( x ) f(x) f(x)就是 [ 1 , x ] [1,x] [1,x]的约数个数之和,所以我们实际上可以线筛预处理出 d d d函数,然后做一遍前缀和。这样优化大概会快4倍

注意事项


总结

  • 对于式子 ∑ i = 1 n ∑ j = 1 m [ d ∣ i 且 d ∣ j ] \sum\limits_{i=1}^n\sum\limits_{j=1}^m[d|i且d|j] i=1nj=1m[didj]很显然它等于 ∑ i = 1 [ n d ] ∑ j = 1 [ m d ] 1 = [ n d ] ∗ [ m d ] \sum\limits_{i=1}^{[\frac nd]}\sum\limits_{j=1}^{[\frac md]}1=[\frac nd]*[\frac md] i=1[dn]j=1[dm]1=[dn][dm],而对于 ∑ i = 1 n ∑ j = 1 m [ d ∣ i 且 d ∣ j ] ∗ [ n i ] ∗ [ m j ] \sum\limits_{i=1}^n\sum\limits_{j=1}^m[d|i且d|j]*[\frac ni]*[\frac mj] i=1nj=1m[didj][in][jm],实际上,将枚举上限分别换成 [ n d ] [\frac nd] [dn] [ m d ] [\frac md] [dm],我们枚举的就是所有 [ d ∣ i 且 d ∣ j ] [d|i且d|j] [didj]的二元组 [ i , j ] [i,j] [i,j] 1 d \frac 1d d1倍。然后我们计算 [ n i ] ∗ [ m j ] [\frac ni]*[\frac mj] [in][jm]的时候要将 i j ij ij放大 d d d倍,因此实际上我们计算的就应该是 [ n i d ] ∗ [ m j d ] [\frac n{id}]*[\frac m{jd}] [idn][jdm],所以就有:
    ∑ i = 1 n ∑ j = 1 m [ d ∣ i 且 d ∣ j ] ∗ [ n i ] ∗ [ m j ] = ∑ i = 1 [ n d ] ∑ j = 1 [ m d ] [ n i d ] ∗ [ m j d ] \sum\limits_{i=1}^n\sum\limits_{j=1}^m[d|i且d|j]*[\frac ni]*[\frac mj]=\sum\limits_{i=1}^{[\frac nd]}\sum\limits_{j=1}^{[\frac md]}[\frac n{id}]*[\frac m{jd}] i=1nj=1m[didj][in][jm]=i=1[dn]j=1[dm][idn][jdm]
  • 对于这样的式子
    ∑ i = 1 n ∑ j = 1 m i j = ( ∑ i = 1 n i ) ∗ ( ∑ j = 1 m j ) \sum_{i=1}^n\sum_{j=1}^mij=\left(\sum_{i=1}^ni\right)*\left(\sum_{j=1}^mj\right) i=1nj=1mij=(i=1ni)(j=1mj)这样可以直接将 O ( n 2 ) O(n^2) O(n2)的复杂度降低为 O ( n ) O(n) O(n)
  • 整除分块,最经典的是处理 ∑ i = 1 n [ x i ] \sum\limits_{i=1}^n[\frac xi] i=1n[ix]。但有另一种形式也是常用的: ∑ i = 1 n f ( [ x i ] ) \sum\limits_{i=1}^nf([\frac xi]) i=1nf([ix]),同样每一块的 [ n i ] [\frac ni] [in]是相同的,就可以对相同 k k k个,算一遍 k ∗ f [ x i ] k*f[\frac xi] kf[ix]
  • d d d函数的线性筛,需要多开一个数组 n u m [ i ] num[i] num[i]记录 i i i的最小质因子出现的次数。处理时,如果 i i%prime[j]==0 i,也就是含有最小值因子 p r i m e [ j ] prime[j] prime[j] n u m [ i ] num[i] num[i]就应该更新成 n u m [ i ] + 1 num[i]+1 num[i]+1,否则的话,说明 i i i里面没有质因子 p r i m e [ j ] prime[j] prime[j],而 p r i m e [ j ] prime[j] prime[j]是新的最小质因子,因此num[i*prime[j]]=1(这里容易出错,要谨记!!!)

AC代码

#include<cstdio>
#include<algorithm>
using namespace std;

const int maxn = 50000 + 10;

bool no_prime[maxn];
int prime[maxn], mu[maxn], pre_mu[maxn], dd[maxn], num[maxn];
long long pre_dd[maxn];
int shai(int n)
{
   int cnt = 0;
   mu[1] = dd[1] = 1;

   for (int i = 2; i <= n; i++)
   {
   	if (!no_prime[i])
   		prime[++cnt] = i, mu[i] = -1, dd[i] = 2, num[i] = 1;

   	for (int j = 1; j <= cnt && prime[j] * i <= n; j++)
   	{
   		no_prime[prime[j] * i] = 1;
   		mu[prime[j] * i] = (i % prime[j] == 0) ? 0 : -mu[i];
   		dd[prime[j] * i] = (i % prime[j] == 0) ? dd[i] / (num[i] + 1) * (num[i] + 2) : dd[i] * 2;
   		num[prime[j] * i] = (i % prime[j] == 0) ? num[i] + 1 : 1;
   		if (i % prime[j] == 0) break;
   	}
   }

   for (int i = 1; i <= n; i++)
   	pre_mu[i] = pre_mu[i - 1] + mu[i], pre_dd[i] = pre_dd[i - 1] + dd[i];
   	
   return cnt;
}

long long cal2(int n, int m)
{
   int l = 1, r;
   long long ans = 0;
   while (l <= n)
   {
   	r = min(n / (n / l), m / (m / l));
   	ans += 1ll * (pre_mu[r] - pre_mu[l - 1]) * pre_dd[n / l] * pre_dd[m / l];
   	l = r + 1;
   }
   return ans;
}

void solve()
{
   shai(maxn - 10);

   int t;
   scanf("%d", &t);
   while (t--)
   {
   	int n, m;
   	scanf("%d%d", &n, &m);
   	if (n > m) swap(n, m);

   	printf("%lld\n", cal2(n, m));
   }
}

int main()
{
   solve();
   return 0;
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值