华为OD机试2024年E卷-查找接口成功率最优时间段[100分]( Java | Python3 | C++ | C语言 | JsNode | Go )实现100%通过率

259 篇文章 190 订阅 ¥59.90 ¥99.00

题目描述

服务之间交换的接口成功率作为服务调用关键质量特性,某个时间段内的接口失败率使用一个数组表示,数组中每个元素都是单位时间内失败率数值,数组中的数值为0~100的整数,给定一个数值(minAverageLost)表示某个时间段内平均失败率容忍值,即平均失败率小于等于minAverageLost,找出数组中最长时间段,如果未找到则直接返回NULL。

输入描述

输入有两行内容,第一行为{minAverageLost},第二行为{数组},数组元素通过空格(” “)分隔,minAverageLost及数组中元素取值范围为0~100的整数,数组元素的个数不会超过100个。

输出描述

找出平均值小于等于minAverageLost的最长时间段,输出数组下标对,格式{beginIndex}-{endIndx}(下标从0开始),如果同时存在多个最长时间段,则输出多个下标对且下标对之间使用空格(” “)拼接,多个下标对按下标从小到大排序。

用例1

输入

1
0
AI实战-加拿大的工业产品价格指数数据集析预测实例(含4个源代码+18.20 MB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:4个代码,共38.64 KB;数据大小:1个文件共18.20 MB。 使用到的模块: numpy pandas os sklearn.model_selection.train_test_split tensorflow.keras.models.Sequential tensorflow.keras.layers.Dense sklearn.impute.KNNImputer sklearn.impute.IterativeImputer sklearn.linear_model.LinearRegression matplotlib.pyplot sklearn.datasets.make_blobs sklearn.cluster.DBSCAN sklearn.neighbors.LocalOutlierFactor sklearn.ensemble.IsolationForest sklearn.svm.OneClassSVM sklearn.preprocessing.MinMaxScaler sklearn.preprocessing.StandardScaler sklearn.preprocessing.MaxAbsScaler sklearn.preprocessing.RobustScaler sklearn.preprocessing.PowerTransformer sklearn.preprocessing.QuantileTransformer sklearn.preprocessing.OneHotEncoder sklearn.preprocessing.LabelEncoder category_encoders seaborn sklearn.cluster.KMeans sklearn.metrics.silhouette_score sklearn.decomposition.PCA sklearn.datasets.load_iris scipy.cluster.hierarchy.linkage scipy.cluster.hierarchy.dendrogram sklearn.cluster.AgglomerativeClustering sklearn.mixture.GaussianMixture matplotlib warnings sklearn.metrics.mean_squared_error sklearn.metrics.r2_score plotly.express sklearn.ensemble.RandomForestRegressor sklearn.ensemble.GradientBoostingRegressor catboost.CatBoostRegressor sklearn.metrics.mean_absolute_error sklearn.model_selection.RandomizedSearchCV statsmodels.tsa.arima.model.ARIMA
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值