平稳性检验(描述性)与纯随机性检验-以北京市最高气温为例(基于R语言)

时间序列分析 专栏收录该内容
1 篇文章 0 订阅

平稳时间序列定义

在这里插入图片描述
在实际应用中,研究最多的是宽平稳随机序列。如果不加特别注明,指的都是宽平稳随机序列。如果序列不满足平稳条件,就称为非平稳序列。

平稳性检验

平稳性检验的方法分为描述性方法与计量性方法。描述性方法主要指时序图检验、ACF 图检验,计量性方法主要指 DF 检验、ADF 检验与PP检验。本文仅介绍描述性方法。

时序图检验

所谓时序图,就是一个二维平而坐标图,通常横轴表示时间,纵轴表示序列取值。时序图可以帮助我们直观地掌握时间序列的一些基本分布特征所以时序分析的第一步通常是绘制时序图。
例:绘制1949–1998年北京市每年最高气温序列时序图。数据如下:
![在这里插入图片描述](https://img-blog.csdnimg.cn/20200325225232177.png

#设置工作目录
setwd("E:\\Code\\R_work") 

#读取数据
data <- read.csv("file.csv")

#将数据转化为时间序列
temp <- ts(data$temp,start=1949)

#绘制时序图
plot(temp)

时序图

ACF图检验

#设置工作目录
setwd("E:\\Code\\R_work") 

#读取数据
data <- read.csv("file.csv")

#将数据转化为时间序列
temp <- ts(data$temp,start=1949)

#绘制ACF图
acf(temp)

ACF图检验

纯随机性检验

在这里插入图片描述

假设条件

在这里插入图片描述

检验统计量

在这里插入图片描述在这里插入图片描述在这里插入图片描述


#设置工作目录
setwd("E:\\Code\\R_work") 

#读取数据
data <- read.csv("file.csv")

#将数据转化为时间序列
temp <- ts(data$temp,start=1949)

#对数据进行检验
Box.test(temp,lag=6)

Box.test一共有四个参数
Box.test(x, lag = 1, type = c(“Box-Pierce”, “Ljung-Box”), fitdf = 0)

  • x 标时间序列
  • lag 延后期数
  • type 选择Q统计量或LB统计量
  • fitdf 当检验的序列是残差到时候,需要加上命令fitdf,表示减去的自由度。

检验结果为:
在这里插入图片描述在给定显著性水平0.05的情况下,P值大于显著性水平,故接受原假设,即北京市最高气温变动属于纯随机波动。

  • 2
    点赞
  • 0
    评论
  • 10
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值