NVIDIA Jetson Xavier NX 串口通讯(发送YOLO检测结果)(记录)

本文介绍了如何在NVIDIA Jetson Xavier NX上使用YOLOv4模型进行目标检测,并通过UART串口将检测到的坐标发送到下位机。在Ubuntu 18.04和Jetpack 4.4.0环境下,通过40pin GPIO连接 ttl转usb小板进行通信。使用cutecom工具测试串口连接,并修改YOLO代码以在检测到目标时发送坐标信息到串口。虽然已实现通讯,但存在偶尔坐标不完整的问题,需要进一步优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


开始之前声明: 本文在NVIDIA Jetson Xavier NX上跑YOLOv4模型,配合ZED相机实时检测,将检测到的目标坐标发送到下位机。
环境: ubuntu18.04,Jetpack4.4.0


NVIDIA Jetson Xavier NX串口

Xavier NX支持基本常用的通讯方式,博主利用40pin的引脚GPIO(UART),引脚分布如下图所示,引脚提供了3.3v和5v供电。
在这里插入图片描述

UART_TX对应的是8,UART_RX对应的是10,.博主外接了一个ttl转usb小板(CH340),usb端连接到下位机(先用PC测试,发送到单片机一样),某宝几块钱一个。注意连接方式RX-TX,TX-RX
运行ls /dev/tty*,注意有4个分别是TCU0、THS0、THS1、THS4。TCU0和THS0都是UART,连接方式不一样,如果使用40pin就是THS0.
在这里插入图片描述

cutecom助手测试

cutecom和串口助手一样,可以方便我们对串口进行测试,在NX和PC中同时安装
安装:sudo apt-get install cutecom
运行:sudo cuetcom
界面如下:
如果已经连好线,在pc端会出现ttyUSB0,我们同样可以用ls /dev/tty*来查看,如果没有,检查连线是否正确。同样可以在cutecom助手device中查看我们的设备。
在这里插入图片描述
点击右上角setting可以设置波特率、校验位、停止位等,与NX中的设置一致即可。
在这里插入图片描述
点击open,打开串口,在input框内尝试发送数据,可以看到PC端可以成功接收数据,通讯成功!
也可以在终端直接echo发送,但记得要更改串口权限,sudo chmod 777 /dev/ttyTHS0
在这里插入图片描述

发送YOLO检测结果

串口程序可以参考这位博主的串口程序介绍
博主配合ZED相机使用,需对YOLO文件夹下的src目录下的yolo_console_dll.cpp进行修改。
找到draw_boxes函数,该函数内部实现坐标的获取,i.x_3d对应X坐标、i.y_3d对应Y坐标、i.z_3d对应Z坐标,即发送这3个坐标到缓存中,将缓存中的内容写入串口设备,下位机读区缓存中的内容即可。
在主函数中,打开串口并初始化

int FD;
FD = open_port(1);//根据自己的串口设置
set_opt(FD,115200,8,3,1);

在draw_boxes中发送坐标,注意在for循环体内添加代码


void draw_boxes(cv::Mat mat_img, std::vector<bbox_t> result_vec, std::vector<std::string> obj_names,
    int current_det_fps = -1, int current_cap_fps = -1,int FD = -1)//添加文件描述符参数,默认为-1,在主函数中同样记得添加。
{
   	
	char buf[512]; //设置buff大小
	int len;
    int const colors[6][3] = {
    {
    1
### NVIDIA Jetson Xavier NX 上安装和配置 YOLO 模型 #### 系统准备 NVIDIA Jetson Xavier NX 默认操作系统为 Ubuntu 18.04 LTS,其对应的软件包源关键字为“bionic”。此设备基于 arm64 架构,因此需要下载适合该架构的依赖项和库文件[^1]。 #### Python 虚拟环境设置 为了更好地管理和隔离不同项目的依赖关系,推荐使用 Miniforge 创建 Conda 虚拟环境来管理 YOLO v5 所需的依赖。Miniforge 是一个轻量级的 Conda 发行版,特别适用于 ARM 平台上的开发工作[^2]。 以下是创建虚拟环境的具体方法: ```bash wget https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-Linux-aarch64.sh chmod +x Miniforge3-Linux-aarch64.sh ./Miniforge3-Linux-aarch64.sh source ~/miniforge3/etc/profile.d/conda.sh conda create -n yolov5 python=3.8 conda activate yolov5 ``` #### 安装 YOLOv5 及其依赖 克隆官方 YOLOv5 GitHub 仓库并进入项目目录: ```bash git clone https://github.com/ultralytics/yolov5.git cd yolov5 ``` 通过 `pip` 工具安装所需的 Python 库: ```bash pip install -r requirements.txt ``` 如果在运行过程中遇到特定模块版本不兼容的问题,则可以手动指定所需版本号进行安装。例如,当检测到缺少某些库或者存在冲突时,可以通过以下命令解决: ```bash sudo pip install tqdm==4.64.1 sudo pip install seaborn==0.12.2 ``` #### 验证模型功能 完成上述步骤之后,尝试执行预训练权重下的目标识别脚本以验证整个流程是否正常运作: ```python from IPython import display display.Image(filename='runs/detect/exp/zidane.jpg') !python detect.py --weights yolov5s.pt --img 640 --conf 0.25 --source data/images/ ``` 以上操作完成后即可实现 YOLO 模型在 NVIDIA Jetson Xavier NX 设备中的部署与测试。
评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值