摘要
本文提出了一种新的推荐系统,解决了基于少量样本物品来估计用户偏好的冷启动问题。为了确定用户在冷启动状态下的偏好,现有的推荐系统,如Netflix,最初向用户提供商品,我们称这些物品为候选商品。然后根据用户选择的物品提出建议。以往的推荐研究有两个局限性:(1)消费了少量商品的用户推荐不佳,(2)候选的商品过少或者不准备,不能够较好的反应用户的偏好。为了克服这两个限制,我们提出了一种基于元学习的推荐系统MeLU。在元学习中,MeLU可以通过几个样本快速适应新任务,通过几个消费商品来估计新用户的偏好。此外,我们提供了一个候选商品选择策略,该策略可确定用于个性化偏好估计的区别项。我们用两个基准数据集对MeLU进行了验证,与两个比较模型相比,MeLU的平均绝对误差至少降低了5.92%。我们还进行了用户研究实验来验证候选商品选择策略。
总结
本文做了两件事,一是利用MAML完成少样本学习任务,二是提出候选商品选择策略,确定用于个性化偏好估计的区别项。
Intro
在常规冷启动解决方法中,基于内容的方法忽视了用户的偏好、基于混合内容的协同过滤方法当交互信息很稀疏的时候效果很不好,而且用户个人信息是隐私不好处理。还有一些推荐系统先选取一些候选商品给用户,然后通过用户的反馈来预估用户的偏好(proposed recommender model)。 对于新用户而言,初始的一个较好的推荐能够更好的留住用户,MeLU的意图也在此。
推荐系统通常可分为基于协同过滤,基于内容或混合系统。基于协同过滤的系统通过从众多用户那里收集偏好信息来估计用户行为(response)。预测基于具有与目标用户相似的评分的其他用户的现有评分。但是,由于缺少user-item之间的交互,因此此类系统无法处理新用户(用户冷启动)和新商品(商品冷启动)。引入了基于内容的系统来解决冷启动问题。这样的系统使用用户档案信息(例如,性别,国籍,宗教和政治立场)和商品内容进行推荐。该系统可能有一个限制,即向内容相似的用户建议相同的项目,而与用户已评分的项目无关。基于协同过滤并利用内容信息的混合系统已广泛用于各种应用程序中。但是,当user-item之间交互数据稀疏时,这些系统不适合推荐。此外,由于隐私问题,收集个人信息具有挑战性,这可能会导致用户冷启动问题。
为了避免用户冷启动中出现的隐私问题,许多基于Web的系统(例如Netflix)仅基于最少的用户信息来推荐项目。 Netflix最初向新用户展示流行的电影和电视节目:我们称这些视频为候选商品。 然后,用户从候选者中选择他/她喜欢的视频。 之后,系统会根据用户选择的视频推荐一些程序。 最近,为了提高性能,已经使用深度学习方法提出了建议。 但是,对于仅对几项评分的新用户来说,冷启动问题仍然存在。
先前的推荐系统受到两个重要问题的限制。首先,系统应该能够向获得一些评分的新用户推荐商品。新用户可能在收到推荐系统最初推荐几个较差的商品后便离开系统。但是,现有系统不是为仅对几项评分的用户设计的。先前的系统利用用户配置文件信息来改善性能不佳的情况,但是并不能解决局限性。考虑两个二十多岁的电影服务的失业男性用户。一个人看了几部科幻电影,而另一个人看了几部恐怖电影。当提供性别,年龄和职业作为用户信息时,推荐系统可能会向两个男人展示非常相似的电影列表,因为一些电影无法弄清他们的喜好。其次,现有系统无法提供可靠的候选商品来估计用户的偏好:它们将受欢迎的商品显示为候选商品。可能不必花时间选择候选商品,因为随着user-item间互动的增加,推荐自然会变得健壮。但是,我们必须刻意选择合适的候选商品,以改善对新用户的冷启动推荐商品。
本文提出了一种基于元学习的推荐系统MeLU,以解决上述问题。元学习侧重于通过仅使用少量训练数据进行学习来改善分类或回归性能。推荐器系统具有与元学习类似的特征,因为它着重于仅基于少量样本来预测用户的偏好。我们考虑与模型无关的元学习(MAML)算法,该算法可以直接基于单个用户的物品消费历史来估计消费者的偏好,即使仅消耗了少量物品也是如此。与基于协同过滤的系统不同(后者与其他用户具有与目标用户相似的评分),建议的系统仅考虑目标用户消耗的商品。此外,我们建议基于MAML的推荐系统的候选商品选择策略,通过选择区分项以进行自定义的偏好估计,

最低0.47元/天 解锁文章
3163

被折叠的 条评论
为什么被折叠?



