android 计步器acc,基于加速度的门限检测计步算法设计

本文提出了一种基于加速度的门限检测计步算法,通过卡尔曼滤波减少噪声,结合状态门限阈值判断行人的运动状态,提高计步精度,适用于计步器和室内定位等领域。实验表明,该算法在行走和跑步状态下的准确率分别达到100%和99%以上,优于传统波峰检测算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 引言

步行运动是一项普遍的,门槛低的全民健身运动,在诸多方面对人体有益,但是过多运动也会对人体产生损伤,因而有效计步显得十分重要。计步器可以记录步行的步数,在孕妇健康管理、体育教学、反映能量消耗、增强运动等方面发挥着巨大的作用。微机电系统(Micro-electro Mechanical Systems, MEMS)以体积小、重量轻、功耗低、耐用性好、价格低廉等优点广泛应用于智能手机传感器模块中。目前大多数计步算法都是围绕加速度实现的,而智能手机内置的加速度传感器能够方便获取加速度。

对于精确计步问题,很多学者已经进行了研究,涌现出了很多方法。

文献 [1] 提出多级自适应门限计步算法,先检测加速度信号中的峰值点和谷值点,接着基于获得的峰值点和谷值点,计算人物的步频特征,根据所得步频特征判断人物的运动状态,最后,针对每种运动状态,自适应分配对应的时间差阈值和动态峰谷值差值阈值,实现多级自适应。该算法的准确率能达到95%以上,但对波峰或者波谷的检测准确度要求很高。文献 [2] 提出了一种基于加速度传感器的自适应计步算法,通过对加速度传感器采集的信号数据进行一系列处理,然后利用人工免疫算法对处理后提取的特征值进行判断,确定人的运动状态,再进行计步。该算法改进了特征值提取方法,摒弃了传统的贝叶斯分类算法,采用人工免疫分类算法有效地提高了计步的准确率,但是运动状态的判定对样本数据库有较强的依赖性。

文献 [3] 设计了一种基于MPU6050加速度传感器的自适应采样计步器,该计步器通过MPU6050加速度传感器采集步态信号,运用滑动滤波算法对传感器输出的数字步态信号进行滤波与降噪处理,采用动态阀值算法对行人的跑步和走路两种状态进行自动识别,并根据人体不同的运动状态自动调整采样速率,计步精度可以达到95%以上。文献 [4] 利用MEMES-IMU多种特征值,提出了行走和跑步的两种步态检测算法。在行走状态下,采用加速度、角速度,足部着地和跨步时间的多条件约束实现零速区间检测。在跑步状态时,通过步伐探测和跨步探测的方法,并结合多条件约束,实现零速区间检测。检测精度达到99%以上,但未将行走状态与跑步状态算法统一。

针对以上算法出现的问题,本文提出了基于加速度的门限检测算法,在波谷检测算法的基础上改进和优化。算法运用卡尔曼滤波算法对传感器输出的步态信号进行滤波和降噪等预处理,然后根据状态门限阈值判定行人的运动状态,比如跑步、行走或者静止,针对不同的运动状态分别设置步频时间差阈值和峰谷值时间差阈值,满足阈值条件则计步。该算法计步精度可以达到96%以上,可以有效应用于计步器、室内定位等领域,测量不同状态下的步数,满足工程应用的需求。

2. 计步原理

步态周期可以分为支撑期和摆动期,是指行走过程中一侧足跟着地至该侧足跟再次着地时所经过的时间 [5]。

如图1所示,在一个步态周期中,人由于大腿的摆动,垂直加速度先增大后减小,前向加速度在迈步过程中增大,在提脚过程中减小。

通过Android手机的三轴加速度传感器获取手机坐标系(如图2(a)所示,x轴沿手机左右方向,y轴沿手机上下方向,z轴沿垂直于手机屏幕的方向)下的加速度数据,如图2(b)所示。加速度数据的变化可以反映出行人运动的全过程,因而基于加速度的算法实现计步是可行的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值