【网络星空】
码龄7年
关注
提问 私信
  • 博客:482,213
    社区:78
    482,291
    总访问量
  • 268
    原创
  • 18,658
    排名
  • 56,380
    粉丝
  • 239
    铁粉

个人简介:人工智能图像领域算法研发,实时发布行业最新技术,希望大家白嫖愉快。

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2018-06-19
博客简介:

2d3d图像算法 halcon\opencv\c++\pcl\vtk\coluldcompare工具 程序员 学习者

博客描述:
学习如同一场马拉松,没有终点线。我们在路上寻找答案,彼此交流,相互鼓励。一起奔跑在知识的田野上。
查看详细资料
  • 原力等级
    当前等级
    8
    当前总分
    5,223
    当月
    0
个人成就
  • 获得632次点赞
  • 内容获得49次评论
  • 获得2,991次收藏
  • 代码片获得7,353次分享
创作历程
  • 1篇
    2025年
  • 41篇
    2024年
  • 44篇
    2023年
  • 186篇
    2022年
  • 1篇
    2021年
  • 1篇
    2020年
成就勋章
TA的专栏
  • halcon
    26篇
  • matlab
    1篇
  • 机器视觉
    6篇
  • 部署
    17篇
  • 性能测试
    10篇
  • 深度学习的宏观框架
    40篇
  • ncnn
  • ubuntu
    10篇
  • OpenCV
    10篇
  • C++编程
    56篇
  • cuda
    2篇
  • cuda编程
    4篇
  • qt
    4篇
  • 轻量化模型
    3篇
  • loss
    1篇
  • yolo
    15篇
  • mask
  • TensorRT
    1篇
  • Flask
    2篇
  • 服务治理与微服务
    1篇
  • github技巧
    2篇
  • 高并发
    1篇
  • 多线程
    1篇
  • 压力测试
    1篇
  • 并发
    1篇
  • 局域网搭建
    2篇
  • celery
    1篇
  • 优化器
    6篇
  • 可视化
    1篇
  • ONNX
    4篇
  • yolov5
    3篇
  • tensorboard
    1篇
  • 模型评价
    2篇
  • anaconda
    3篇
  • jupyter
    1篇
  • environment
    9篇
  • 特征融合
    1篇
  • 特征提取
    1篇
  • ubuntu运行exe
    1篇
  • openvino
    3篇
  • SSD
    2篇
  • GPU排名
    1篇
  • 模型设计
    4篇
  • pytorch
    31篇
  • 并行计算
    3篇
  • netro
    1篇
  • 医疗影像处理
    2篇
  • Python编程
    4篇
  • 模型部署
    1篇
  • 损失函数
    1篇
  • 目标检测
    1篇
  • 语义分析
    2篇
  • feature map
    2篇
  • 局域网组网
    1篇
  • 对抗神经网络
    1篇
兴趣领域 设置
  • Python
    pythonflask
  • 编程语言
    c++
  • 开发工具
    githubvisual studio
  • 数据结构与算法
    最小二乘法
  • 人工智能
    人工智能pytorch
  • 设计模式
    装饰器模式模板方法模式
创作活动更多

开源数据库 KWDB 社区征文大赛,赢取千元创作基金!

提交参赛作品,有机会冲刺至高2000元的创作基金,快来参与吧!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

【常见二维码种类及识别】

常见的二维码有PDF417、QR Code、Code 49、Code 16K、Code One等。这些二维码的信息密度都比传统的一维码有了较大提高,如PDF417的信息密度是一维码CodeC39的20多倍。在二维码标准化研究方面,国际自动识别制造商协会(AIM)、美国标准化协会(ANSI)已完成了PDF417、QR Code、Code 49、Code 16K、Code One等码制的符号标准。
原创
发布博客 2025.01.22 ·
1805 阅读 ·
10 点赞 ·
0 评论 ·
28 收藏

【手眼标定 九点标定之一:xy模型】

九点标定是手眼标定的其中一种简易的实现方式,它通过使用已知的且在世界坐标系位置已知的九个点来计算图像坐标与机械坐标的转换矩阵。适用于三轴+旋转轴非标系统、SCARA机器人、六轴机器人(在运行过程中保证Rx&Ry不动即可)。
原创
发布博客 2024.12.10 ·
813 阅读 ·
12 点赞 ·
0 评论 ·
26 收藏

【Halcon 3D Matching】

将指向3D对象模型 坐标系的位姿转换为指向3D形状模型参考坐标系的位姿,反之亦然。在3D场景中细化可变形表面模型的位置和变形。在3D场景中找到可变形表面模型的最佳匹配。在3D场景和图像中找到表面模型的最佳匹配。添加一个参考点到一个可变形的表面模型。从基于匹配的可变形表面获得结果的细节。将3D形状模型的边缘投影到图像坐标中。在3D场景和图像中细化表面模型的姿态。在图像中找到3D形状模型的最佳匹配。在3D场景中找到表面模型的最佳匹配。从基于表面的匹配中获得结果的细节。在3D场景中细化表面模型的姿态。
原创
发布博客 2024.12.10 ·
423 阅读 ·
5 点赞 ·
0 评论 ·
10 收藏

【金刚石的红外透光率是多少】

经过分析,我们发现高质量、低杂质的金刚石在红外波段(如中波红外3-5μm和长波红外8-14μm)的透光率可以达到60%-80%。未来,随着金刚石制备技术的不断进步和光学加工工艺的完善,我们有理由相信,金刚石将在红外光学系统中发挥更加重要的作用。实验表明,高质量、低杂质的金刚石在红外波段具有较高的透光率,这使得金刚石成为制造红外窗口、透镜等光学元件的理想材料。一般来说,高质量、低杂质的金刚石在红外波段(如中波红外3-5μm和长波红外8-14μm)的透光率可以达到60%-80%。一、金刚石的红外透光性能。
原创
发布博客 2024.12.10 ·
446 阅读 ·
6 点赞 ·
0 评论 ·
4 收藏

【红外透硅原理】

3.红外透射: 当红外光线进入硅材料时,它的能量不足以激发硅内的电子从价带跃迁到导带,因此不会被吸收。然而,当红外光的波长超过硅的能隙(即光子能量低于硅的带隙能量),光子能够穿透硅晶体而不被吸收。红外透硅是一种特殊的材料特性,允许红外辐射(红外光)在硅材料中传播和传输。总的来说,红外透硅原理是基于硅材料在红外波长范围内的特殊透明性,使得红外光可以穿透硅晶体而不被吸收。1.硅的特性: 硅是一种半导体材料,其原子结构允许红外光穿过并传播。虽然硅在可见光范围内是不透明的,但在红外波长范围内,硅的透明性得到改善。
原创
发布博客 2024.12.09 ·
205 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

【获取轮廓(连通域)的面积、周长、矩形度、圆形度、宽长比、周径比】

fabs(rbox.size.width * 1.0 / rbox.size.height - 1) < 0.1 //表示宽长比在1附近±0.1内浮动。输入当前轮廓点集,第二个参数:bool closed:表示轮廓是否封闭的。网上的公式一般是这个:e=(4π 面积)/(周长 * 周长);周径比的周即周长,径是指上面找到的轮廓最小外接矩形的长的一条边。输入当前轮廓点集,输出该轮廓点集的面积。
原创
发布博客 2024.10.16 ·
505 阅读 ·
3 点赞 ·
0 评论 ·
10 收藏

【opencv实战 PCA算法的应用 】

假设有上图所示的一组2维点,其中每个维度与您感兴趣的功能相对应。这意味着,如果你知道沿蓝线的点的位置,则你掌握的关于该点的信息比你只知道它在Feature1 轴或Feature2轴上的位置要多。PCA的主要思想是寻找到数据的主轴方向,由主轴构成一个新的坐标系,这里的维数可以比原维数低,然后数据由原坐标系向新的坐标系投影,这个投影的过程就可以是降维的过程。在图像上运行 PCA 后的结果如图,由此产生的轴是数据点差异最大的轴,这不需要反映形状的关键结构特征,尽管如此,它还是对方向的有效描述,可以获取任何形状。
原创
发布博客 2024.10.16 ·
481 阅读 ·
5 点赞 ·
0 评论 ·
7 收藏

【c++中带参数的宏】

最基本的宏是用#define指令定义的,用于简单的文本替换。// 相当于 3.14159 * radius * radiusreturn 0;使用反斜杠 \ 可以将宏定义展开为多行,便于阅读和维护。return 0;name();return 0;} \// 测试代码。
原创
发布博客 2024.10.16 ·
353 阅读 ·
3 点赞 ·
0 评论 ·
10 收藏

【SVD求解两组多维点之间的欧式变换矩阵】

本文介绍了如何利用SVD奇异值分解求解两组3D点之间的最优旋转R和平移t,以最小化点集变换后的误差。首先对点集进行质心处理,然后构建矩阵W并进行SVD分解,通过调整得到旋转矩阵R和向量t,最终形成变换矩阵。Halcon代码示例展示了具体实现过程。
原创
发布博客 2024.10.16 ·
234 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

【opencv distanceTransform 缺陷检测】

【代码】【opencv distanceTransform 缺陷检测】
原创
发布博客 2024.10.16 ·
232 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

【opencv独立线程显示缓存图像】

图像显示和其他功能逻辑放在不同的线程。
原创
发布博客 2024.09.25 ·
233 阅读 ·
3 点赞 ·
1 评论 ·
0 收藏

【bat限制程序使用CPU核心数】

【代码】【bat限制程序使用CPU核心数】
原创
发布博客 2024.09.25 ·
361 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

【Halcon 解方程(solve_matrix)】

【代码】【Halcon 解方程(solve_matrix)】
原创
发布博客 2024.09.25 ·
280 阅读 ·
8 点赞 ·
0 评论 ·
3 收藏

【最小二乘法拟合圆的标准方程】

文章目录
原创
发布博客 2024.09.25 ·
142 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

【矩阵求解方程组及超定方程组最优解】

文章目录
原创
发布博客 2024.09.25 ·
155 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

【dump文件配置与查看】

正常情况下,可执行程序异常退出后不会生成dmp文件,这给定位分析问题原因带来了极大的困难。通过修改注册表我们可以让程序生成dmp文件,配合windbg工具的使用,可以方便的帮助定位异常问题原因。
原创
发布博客 2024.09.06 ·
978 阅读 ·
22 点赞 ·
0 评论 ·
10 收藏

【VTK 图形基本操作进阶_表面重建技术(等值面提取)】

由于这一方法原理简单,易于实现,目前已经得到了较为广泛的应用,称为三维数据等值面生成的经典算法。等值面提取类根据数据类型的不同而有所侧重。首先通过一个reader对象来读取一幅图像,并将输入到vtkMarchingCubes中,提取等值面时,最重要的是要设置等值面的数值,SetValue()函数用于设置等值面的值,其第一个参数表示等值面的序号,因此可以通过这个函数设置多个等值面值来提取多个等值面。此时可通过等值面提取技术,仅提取感兴趣的一个或者几个组织轮廓,并生成网格模型以供后续的处理和研究。
原创
发布博客 2024.07.29 ·
1074 阅读 ·
12 点赞 ·
0 评论 ·
12 收藏

【拟合方法】

huber`和 `tukey`是强大的误差统计方法,用来估算无异常点的轮廓点和近似圆的距离标准差。在Tukey算法中,异常点事被删除,而在Huber算法中,异常点仅仅是被抑制,或者更准确的说,它们是线性加权的。在计算机科学中,代数距离更常见用于分析数据点的关系,而在物理测量中,几何距离可能更为精确,尤其是在涉及真实世界物体形状和尺寸时。(4)`geometric`这种方法最小化轮廓点和结果圆之间的几何距离,这种算法在距离统计上是最优的,但需要更多的计算时间,如果轮廓点被噪声严重影响,建议使用这个选项;
原创
发布博客 2024.07.17 ·
445 阅读 ·
4 点赞 ·
0 评论 ·
4 收藏

【c++ 容器 算法学习】

C++标准库中的容器提供了许多有用的工具,其中就包括了std::back_inserter。这个工具可以用来在容器的末尾插入一个元素,并且不会改变容器的顺序。本文将会详细介绍如何使用std::back_inserter。std::back_inserter的使用非常简单。然后,我们可以在算法中使用std::back_inserter。可以看到,std::back_inserter成功地插入了元素4,并且没有改变容器中元素的顺序。使用C++标准库中的std::back_inserter进行迭代器插入。
原创
发布博客 2024.07.17 ·
360 阅读 ·
3 点赞 ·
0 评论 ·
7 收藏

【【Opencv】 Mat、vector、Point互转】

pp和output的区别在于:pp是vector而output是vector。使用Mat存储数据,并读取相应元素。将数组内容传递给Mat。
原创
发布博客 2024.07.16 ·
618 阅读 ·
4 点赞 ·
0 评论 ·
11 收藏
加载更多