【Anaconda环境管理-创建编辑环境及GPU搭建】


前言

例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。


一、python环境管理

1、anaconda安装

Anaconda的安装主要是为了方便环境管理,可以同时在一个电脑上安装多种环境,不同环境放置不同框架:pytorch、tensorflow、keras可以在不同的环境下安装,只需要使用conda create –n创建新环境即可。

Anaconda的下载

同学们可以选择安装新版Anaconda和旧版的Anaconda,安装步骤没有什么区别。

旧版本anaconda的下载:

新版本的Anaconda没有VSCODE,如果大家为了安装VSCODE方便可以直接安装旧版的Anaconda,百度网盘连接如下。也可以装新版然后分开装VSCODE。
链接: https://pan.baidu.com/s/12tW0Oad_Tqn7jNs8RNkvFA
提取码: i83n

新版本anaconda的下载:

如果想要安装最新的Anaconda,首先登录Anaconda的官网:https://www.anaconda.com/distribution/。直接下载对应安装包就可以。

2、anaconda_GUI创建虚拟环境

在这里插入图片描述

3、anaconda_dos创建虚拟环境

  • 默认你已经安装anaconda的基础上。
  • 以下操作均在anaconda prompt窗口进行命令行操作。
  • 首先,创建环境,在这里创建一个pytorch版本的环境。使用python==3.7.4,取名为pytorch.
conda create -n pytorch python==3.6.15

4、anaconda_dos查看各个环境

  • 查看是否创建成功。
conda info --envs

结果如图:可以看到环境已经建好。
在这里插入图片描述
查看完环境详细信息后,在pycharm中不同项目可以在指定路径寻找环境
在这里插入图片描述

5、anaconda_dos切换各个环境

下面激活环境,从base环境切换到pytorch环境中。

conda activate pytorch

从pytorch环境切换到base环境中。

conda activate base

6、anaconda_dos删除某个环境

有的时候为了安装某个适配的库需要好多个环境,看起来也比较麻烦,所以需要删除一些不需要的环境。

conda remove -n pytorch --all

6、anaconda_dos重命名某个环境

Anaconda没有重命名命令,因此使用克隆删除的方法

进入旧环境

conda activate old_name

克隆旧环境

conda create -n new_name --clone old_name

退出旧环境

conda deactivate

删除旧环境

conda remove -n old_name --all

查看最终结果

conda info --envs

7、Python项目依赖包生成requirements及安装

python项目如何在另一个环境上重新构建项目所需要的运行环境依赖包?

使用的时候边记载是个很麻烦的事情,总会出现遗漏的包的问题,这个时候手动安装也很麻烦,不能确定代码报错的需要安装的包是什么版本。这些问题,requirements.txt都可以解决!
生成requirements.txt,有两种方式:

  • 第一种 适用于 单虚拟环境的情况:
pip freeze > requirements.txt

为什么只适用于单虚拟环境?因为这种方式,会将环境中的依赖包全都加入,如果使用的全局环境,则下载的所有包都会在里面,不管是不时当前项目依赖的,如下图
在这里插入图片描述
当然这种情况并不是我们想要的,当我们使用的是全局环境时,可以使用第二种方法。

  • 第二种 (推荐) 使用 pipreqs

github地址为: https://github.com/bndr/pipreqs

# 安装
pip install pipreqs
# 在当前目录生成
pipreqs . --encoding=utf8 --force

注意 --encoding=utf8 为使用utf8编码,不然可能会报UnicodeDecodeError: ‘gbk’ codec can’t decode byte 0xae in position 406: illegal multibyte sequence 的错误。

–force 强制执行,当 生成目录下的requirements.txt存在时覆盖。

在这里插入图片描述
使用requirements.txt安装依赖的方式:

pip install -r requirements.txt

二、pytorch_gpu环境搭建

我这里使用的是torch=1.2.0,官方推荐的Cuda版本是10.0,因此会用到cuda10.0,与cuda10.0对应的cudnn是7.4.1。

1、Cudnn和CUDA的下载

网盘下载:

链接: https://pan.baidu.com/s/1znYSRDtLNFLufAuItOeoyQ
提取码: 8ggr

官网下载:

cuda10.0官网的地址是:
cuda10.0官网地址
cudnn官网的地址是:需要大家进去后寻找7.4.1.5。
cudnn官网地址

下载完之后得到这两个文件。

在这里插入图片描述
2、Cudnn和CUDA的安装
下载好之后可以打开exe文件进行安装。
在这里插入图片描述

这里选择自定义。
在这里插入图片描述

然后直接点下一步就行了。
在这里插入图片描述

安装完后在C盘这个位置可以找到根目录。
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0
然后大家把Cudnn的内容进行解压。
在这里插入图片描述

把这里面的内容直接复制到C盘的根目录下就可以了。

在这里插入图片描述

2.测试

  • 安装完cudn和cudnn后重启电脑;
  • 切换环境到一下项目,执行;
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchsummary import summary

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # PyTorch v0.4.0
model = Net().to(device)

summary(model, (1, 28, 28))

总结

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

【网络星空】

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值