文章目录
前言
例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。
一、python环境管理
1、anaconda安装
Anaconda的安装主要是为了方便环境管理,可以同时在一个电脑上安装多种环境,不同环境放置不同框架:pytorch、tensorflow、keras可以在不同的环境下安装,只需要使用conda create –n创建新环境即可。
Anaconda的下载
同学们可以选择安装新版Anaconda和旧版的Anaconda,安装步骤没有什么区别。
旧版本anaconda的下载:
新版本的Anaconda没有VSCODE,如果大家为了安装VSCODE方便可以直接安装旧版的Anaconda,百度网盘连接如下。也可以装新版然后分开装VSCODE。
链接: https://pan.baidu.com/s/12tW0Oad_Tqn7jNs8RNkvFA
提取码: i83n
新版本anaconda的下载:
如果想要安装最新的Anaconda,首先登录Anaconda的官网:https://www.anaconda.com/distribution/。直接下载对应安装包就可以。
2、anaconda_GUI创建虚拟环境

3、anaconda_dos创建虚拟环境
- 默认你已经安装anaconda的基础上。
- 以下操作均在anaconda prompt窗口进行命令行操作。
- 首先,创建环境,在这里创建一个pytorch版本的环境。使用python==3.7.4,取名为pytorch.
conda create -n pytorch python==3.6.15
4、anaconda_dos查看各个环境
- 查看是否创建成功。
conda info --envs
结果如图:可以看到环境已经建好。

查看完环境详细信息后,在pycharm中不同项目可以在指定路径寻找环境

5、anaconda_dos切换各个环境
下面激活环境,从base环境切换到pytorch环境中。
conda activate pytorch
从pytorch环境切换到base环境中。
conda activate base
6、anaconda_dos删除某个环境
有的时候为了安装某个适配的库需要好多个环境,看起来也比较麻烦,所以需要删除一些不需要的环境。
conda remove -n pytorch --all
6、anaconda_dos重命名某个环境
Anaconda没有重命名命令,因此使用克隆删除的方法
进入旧环境
conda activate old_name
克隆旧环境
conda create -n new_name --clone old_name
退出旧环境
conda deactivate
删除旧环境
conda remove -n old_name --all
查看最终结果
conda info --envs
7、Python项目依赖包生成requirements及安装
python项目如何在另一个环境上重新构建项目所需要的运行环境依赖包?
使用的时候边记载是个很麻烦的事情,总会出现遗漏的包的问题,这个时候手动安装也很麻烦,不能确定代码报错的需要安装的包是什么版本。这些问题,requirements.txt都可以解决!
生成requirements.txt,有两种方式:
- 第一种 适用于 单虚拟环境的情况:
pip freeze > requirements.txt
为什么只适用于单虚拟环境?因为这种方式,会将环境中的依赖包全都加入,如果使用的全局环境,则下载的所有包都会在里面,不管是不时当前项目依赖的,如下图

当然这种情况并不是我们想要的,当我们使用的是全局环境时,可以使用第二种方法。
- 第二种 (推荐) 使用 pipreqs
github地址为: https://github.com/bndr/pipreqs
# 安装
pip install pipreqs
# 在当前目录生成
pipreqs . --encoding=utf8 --force
注意 --encoding=utf8 为使用utf8编码,不然可能会报UnicodeDecodeError: ‘gbk’ codec can’t decode byte 0xae in position 406: illegal multibyte sequence 的错误。
–force 强制执行,当 生成目录下的requirements.txt存在时覆盖。

使用requirements.txt安装依赖的方式:
pip install -r requirements.txt
二、pytorch_gpu环境搭建
我这里使用的是torch=1.2.0,官方推荐的Cuda版本是10.0,因此会用到cuda10.0,与cuda10.0对应的cudnn是7.4.1。
1、Cudnn和CUDA的下载
网盘下载:
链接: https://pan.baidu.com/s/1znYSRDtLNFLufAuItOeoyQ
提取码: 8ggr
官网下载:
cuda10.0官网的地址是:
cuda10.0官网地址
cudnn官网的地址是:需要大家进去后寻找7.4.1.5。
cudnn官网地址
下载完之后得到这两个文件。

2、Cudnn和CUDA的安装
下载好之后可以打开exe文件进行安装。

这里选择自定义。

然后直接点下一步就行了。

安装完后在C盘这个位置可以找到根目录。
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0
然后大家把Cudnn的内容进行解压。

把这里面的内容直接复制到C盘的根目录下就可以了。

2.测试
- 安装完cudn和cudnn后重启电脑;
- 切换环境到一下项目,执行;
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchsummary import summary
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # PyTorch v0.4.0
model = Net().to(device)
summary(model, (1, 28, 28))


1685

被折叠的 条评论
为什么被折叠?



