De-Noising By Soft-Thresholding-英文文献
DE-NOISING BY
SOFT-THRESHOLDING
David L. Donoho
Department of Statistics
Stanford University
Abstract
Donoho and Johnstone (1992a) prop osed a metho d for reconstruct-
ing an unknown function f on [0 ; 1] from noisy data d = f (t ) + z ,
i i i
iid
^
i = 0 ; : : : ; n 1, t = i=n , z N (0 ; 1). The reconstruction f is
i i n
dened in the wavelet domain by translating all the empirical wavelet
p p
co ecients of d towards 0 by an amount 2 log(n ) = n . We prove
^
two results ab out that estimator. [Smo oth]: With high probability f
n
is at least as smo oth as f , in any of a wide variety of smo othness mea-
sures. [Adapt]: The estimator comes nearly as close in mean square
to f as any measurable estimator can come, uniformly over balls in
each of two broad scales of smo othness classes. These two prop erties
are unprecedented in several ways. Our pro of of these results develops
new facts ab out abstract statistical inference and its connection with
本文介绍了Donoho和Johnstone(1992)提出的一种利用软阈值方法进行信号去噪的技术,该方法在[0;1]区间内从噪声数据中重构函数。我们证明了该估计器在高概率下具有至少与原始信号相同的平滑度,并且在各种光滑度类别中,其均方误差接近最优。这些结果在统计推断理论和实际应用中具有开创性意义,展示了新的理论洞察。

被折叠的 条评论
为什么被折叠?



