温岭天气预报软件测试,温岭天气预报15天

发送给QQ好友

★温岭未来15天天气预报★

温岭天气预报7月22日 星期四:

小到中雨,25°C~29°C东北风,7-8级转6-7级

温岭天气预报7月23日 星期五:

小到中雨转暴雨,26°C~29°C东北风转北风,7-8级转9-10级

温岭天气预报7月24日 星期六:

暴雨到大暴雨转大到暴雨,25°C~26°C西北风转西南风,10-11级

温岭天气预报7月25日 星期日:

小雨,27°C~30°C南风转西南风,8-9级转7-8级

温岭天气预报7月26日 星期一:

小雨转小到中雨,27°C~31°C南风,7-8级转8-9级

温岭天气预报7月27日 星期二:

中雨转小雨,26°C~29°C南风转东风,6-7级转4-5级

温岭天气预报7月28日 星期三:

小到中雨转小雨,27°C~32°C东南风转南风,5-6级转7-8级

温岭天气预报7月29日 星期四:

雨转阴,28°C~33°C南风转西南风,3-4级转小于3级

温岭天气预报7月30日 星期五:

雨转多云,27°C~33°C西南风转西北风,小于3级

温岭天气预报7月31日 星期六:

雨,27°C~33°C西南风转北风,小于3级

温岭天气预报8月01日 星期日:

雨,27°C~31°C东北风,3-4级转小于3级

温岭天气预报8月02日 星期一:

雨转晴,26°C~31°C东北风转北风,3-4级转小于3级

温岭天气预报8月03日 星期二:

多云,26°C~32°C东北风转北风,小于3级

温岭天气预报8月04日 星期三:

晴,26°C~33°C东风转西南风,小于3级

温岭天气预报8月05日 星期四:

晴,27°C~33°C东南风转西南风,小于3级

温岭未来15天天气预报由15tianqi.com提供

https://www.15tianqi.com/wenling/

数据集介绍:野生动物目标检测数据集 一、基础信息 数据集名称:野生动物目标检测数据集 图片数量: - 训练集:11,787张图片 - 验证集:643张图片 - 测试集:431张图片 总计:12,861张真实场景图片 分类类别: - Elephant(象):陆生大型哺乳动物,包含多种自然环境中的活动姿态。 - Bear(熊):涵盖不同种类的熊科动物,包括静态及运动状态。 - Cheetah(猎豹):强调高速运动状态下的动态捕捉样本。 - Deer(鹿):包含林地和草原环境中的鹿群及个体样本。 - Fox(狐):涵盖多种狐狸品种的多样化行为模式。 标注格式: YOLO格式,包含标准化的归一化坐标标注,可直接适配YOLOv5/v7/v8等主流检测框架。 数据特性: 涵盖航拍、地面视角等多角度拍摄的野生动物图像,包含昼夜不同光照条件下的样本。 二、适用场景 生态监测系统开发: 支持构建自然保护区智能监测系统,实时检测野生动物活动轨迹并统计种群分布。 自动驾驶环境感知: 用于训练车辆视觉系统识别道路周边野生动物的能力,提升行车安全系数。 野生动物研究分析: 提供动物行为学研究的结构化数据支撑,支持物种活动模式分析与栖息地研究。 安防监控系统升级: 适用于农场、林区等场景的智能安防系统开发,精准识别潜在动物威胁。 三、数据集优势 多物种覆盖: 包含5类高关注度野生动物,覆盖陆地生态系统的关键指示物种。 场景多样性: 数据采集涵盖丛林、草原、山地等多种自然生境,增强模型泛化能力。 标注专业性: 经动物学专家校验的精准边界框标注,确保目标定位与分类准确性。 任务适配性: 原生YOLO格式支持快速迁移至目标检测、行为分析、密度估计等衍生任务。 规模优势: 超万级标注样本量,有效支撑深度神经网络的特征学习需求。
数据集介绍:STAS目标检测数据集 数据集名称:STAS目标检测数据集 图片数量: - 训练集:733张 - 验证集:211张 - 测试集:105张 总计:1,049张图像 分类类别: - STAS:特定场景下的目标检测类别(具体语义需结合业务背景) - stas:小写形式分类标签,与STAS形成多粒度标注层级 标注格式: YOLO格式,包含归一化中心坐标及边界框尺寸,可直接用于目标检测模型训练。 数据特性: 标注框尺寸分布多样,涵盖大尺度物体(如宽度占比8.5%、高度占比20.8%)到小目标(如宽度占比2.1%、高度占比5.7%),适配多尺度检测需求。 航空影像分析: 适用于无人机/卫星图像中的目标定位与识别,支持农业监测、环境评估等场景。 工业检测系统: 可训练PCB板缺陷检测、传送带物料识别等工业视觉模型,框体标注适配机械臂抓取坐标计算。 智慧城市应用: 支持交通监控、基础设施检测等城市管理场景中的多目标追踪任务。 学术研究: 提供标准化YOLO格式数据,适用于目标检测领域的模型对比实验与算法创新研究。 标注质量突出: 边界框覆盖密集场景(单图最高达7个实例),包含部分重叠目标标注,考验模型鲁棒性。 空间分布全面: 标注框位置覆盖图像中心区(如坐标0.39,0.33)到边缘区域(如坐标0.95,0.85),提升模型全图检测能力。 工程友好性: 原生适配YOLOv5/v8等主流框架,提供标准化train/val/test划分,支持即插即用。 场景适配性强: 标注目标宽高比差异显著(从接近正方形到细长形态),满足不同行业对物体比例的检测需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值