
学习统一的Hyper - network用于多模态MR图像合成和缺失模态的肿瘤分割
引入额外的分类器,预测提取融合特征时每个模态是否可用,对抗性地迫使超编码器和融合块产生无法被分类器正确分类的融合特征,即保证提取到的融合特征再公共特征空间中。利用提取到的公共特征重建多模态MR,将特征和完整的模态MR图像合并,输入到分割网络来估计肿瘤标签。可以自适应地交互和融合从不同输入模态中提取的多模态特征。每个图节点对应每个模态的特征,节点数量动态适应可用模态的数量,边建模了每一对可用模态之间的联系。将模态补全作为正则化,将补全后的图像作为分割的输入,将补全过程中提取的共同特征作为额外的分割输入。



























