oracle只有groupby如何优化,oracle优化器简介

一、oracle优化器模式

ORACLE的优化器共有3种:

a.  RULE (基于规则)   b. COST (基于成本)  c. CHOOSE (选择性)

为了使用基于成本的优化器(CBO, Cost-Based Optimizer) , 你必须定期更新统计信息,以保证数据库中的对象统计信息(object statistics)的准确性.

如果数据库的优化器模式设置为选择性(CHOOSE),那么实际的优化器模式将和是否运行过analyze命令有关. 如果table已经被analyze过, 优化器模式将自动成为CBO , 反之,数据库将采用RULE形式的优化器。

二.访问Table的方式

ORACLE 采用两种访问表中记录的方式:

a.  全表扫描

全表扫描就是顺序地访问表中每条记录. ORACLE采用一次读入多个数 据块(database block)的方式优化全表扫描。

b.  索引扫描

你可以采用基于ROWID的访问方式情况,提高访问表的效率, ROWID包含了表中记录的物理位置信息.ORACLE采用索引(INDEX)实现了数据和存放数据的物理位置(ROWID)之间的联系. 通常索引提供了快速访问ROWID的方法,因此那些基于索引列的查询就可以得到性能上的提高.

其中ORACLE对索引又有两种访问模式.

a)索引唯一扫描 ( INDEX UNIQUE SCAN)

大多数情况下, 优化器通过WHERE子句访问INDEX.

例如:

表LOADING有两个索引 : 建立在LOADING列上的唯一性索引LOADING_PK和建立在MANAGER列上的非唯一性索引IDX_MANAGER.

SELECT loading

FROM LOADING

WHERE LOADING = ‘ROSE HILL’;

在内部 , 上述SQL将被分成两步执行, 首先 , LOADING_PK 索引将通过索引唯一扫描的方式被访问 , 获得相对应的ROWID, 通过ROWID访问表的方式执行下一步检索.

如果被检索返回的列包括在INDEX列中,ORACLE将不执行第二步的处理(通过ROWID访问表). 因为检索数据保存在索引中, 单单访问索引就可以完全满足查询结果.

下面SQL只需要INDEX UNIQUE SCAN 操作.

SELECT LOADING

FROM  LOADING

WHERE LOADING = ‘ROSE HILL’;

b)索引范围查询(INDEX RANGE SCAN)

适用于两种情况:

1. 基于一个范围的检索

2. 基于非唯一性索引的检索

例1:

SELECT LOADING

FROM  LOADING

WHERE LOADING LIKE ‘M%’;

WHERE子句条件包括一系列值, ORACLE将通过索引范围查询的方式查询LODGING_PK . 由于索引范围查询将返回一组值, 它的效率就要比索引唯一扫描

低一些.

例2:

SELECT LOADING

FROM  LOADING

WHERE MANAGER = ‘BILL GATES’;

这个SQL的执行分两步, IDX_MANAGER的索引范围查询(得到所有符合条件记录的ROWID) 和下一步同过ROWID访问表得到LOADING列的值. 由于IDX_MANAGER是一个非唯一性的索引,数据库不能对它执行索引唯一扫描.

由于SQL返回LOADING列,而它并不存在于IDX_MANAGER索引中, 所以在索引范围查询后会执行一个通过ROWID访问表的操作.

WHERE子句中, 如果索引列所对应的值的第一个字符由通配符(WILDCARD)开始, 索引将不被采用.

SELECT LOADING

FROM  LOADING

WHERE MANAGER LIKE ‘%HANMAN’;

在这种情况下,ORACLE将使用全表扫描.

三.SQL调优的本质就是调整执行计划。

在好多情况下,oracle自动选择的执行计划并不是最优的,这时需要我们人工去干预。(什么是执行计划?)

对SQL调优基本步骤:

a) 捕获SQL语句

b) 产生SQL语句的执行计划;

c) 验证统计信息(SQL语句涉及到的表格是否做过分析),表格信息(结果集的记录数,索引),字段上面数据分布特点

d) 通过手工收集到的信息,形成自己理想的执行计划。

e) 如果做过分析,则重新分析相关表格或者做柱状图分析。

f) 如果没有做过分析,则通过尝试不同的Hint,从而获得合适的执行计划。

g) 当我们正常无法调优到位时,可以打开10053事件打开优化器的跟踪,看看Oracle如何选择的.

alter session set events='10053 trace name context forever,level 2';

四.如何捕获SQL语句

捕获SQL语句的方法有如下几种:

1.SQL TRACE或10046跟踪某个模块。

2.PERFSTAT性能统计包,使用方法见附录二。

3.V$SQL,V$SESSION_WAIT,V$SQL_TEXT

五.如何查看执行计划

查看SQL语句的执行计划有以下几种:

1.Set autotrace on(set autotrace traceonly exp)

2.Explain plan for …..

@?/rdbms/admin/utlxpls.sql

3.V$SQL_PLAN视图

column operation format a16

column "Query Plan" format a60

column options format a15

column object_name  format a20

column id  format 99

select id,lpad(' ',2*(level-1))||operation||' '||options||' '||object_name||' '

||decode(id,0,'Cost = '||position) "Query Plan"

from (select *

from v$sql_plan

where address='&a') sql_plan

start with id = 0

connect by prior id = parent_id

/

4.第三方工具,如pl/sql developer,TOAD

六.SQL语句主要的连接方法

a) Nested-loop join

适合于小表(几千条,几万条记录)与大表做联接

在联接列上有索引。

分内表和外表(驱动表),靠近from子句的是内表。从效率上讲,小表应该作外表,大表应该作内表,即大表查询时走索引。

COST= Access cost of A(驱动表) + (access cost of B * number of rows from A)

成本计算方法:

设小表100行,大表100000行。

两表均有索引:

如果小表在内,大表在外(驱动表)的话,则扫描次数为:

100000+100000*2 (其中2表示IO次数,一次索引,一次数据)

如果大表在内,小表在外(驱动表)的话,则扫描次数为:

100+100*2.

两表均无索引:

如果小表在内,大表在外的话,则扫描次数为:

100000+100*100000

如果大表在内,小表在外的话,则扫描次数为:

100+100000*100

注意:如果一个表有索引,一个表没有索引,ORACLE会将没有索引的表作驱动表。如果两个表都有索引,则外表作驱动表。如果两个都没索引的话,则也是外表作驱动表。

基本的执行计划如下所示:

NESTED LOOPS

TABLE ACCESS (BY ROWID)  OF  our_outer_table

INDEX (..SCAN) OF outer_table_index(….)

TABLE ACCESS (BY ROWID)  OF  our_inner_table

INDEX (..SCAN) OF inner_table_index(….)

b) Hash join

适合于大表与大表,小表(几十万,几百万)与大表之间的联连。

联接列上不需要索引。

基本执行计划如下:

HASH JOIN

TABLE ACCESS (….)  OF  tableA

TABLE ACCESS (….)  OF  tableB

cost= (access cost of A * number of hash partitions of B) + access cost of B

可以看出主要成本在于A表是否可以被Cache。Hash_area_size的大小将决定Hash Join的主要成本。可以看出Hash Join的成本和返回集合并没有直接的关系,所以当返回结果集比较大的时候一般具有较好的性能。

为了加快hash join的速度,可以调大hash_area_size和pga_aggregate_target(默认为25M)的值。

c) Sort Merge join

每一个Row Source在Join列上均排序。

然后两个排序后的Row Source合并后,作一个结果集返回。

Sort/Merge Join仅仅对equal Join有效。

基本执行计划

MERGE (JOIN)

SORT (JOIN)

TABLE ACCESS (….)  OF  tableA

SORT (JOIN)

TABLE ACCESS (….)  OF  tableB

cost= access cost of A + access cost of B +(sort cost of A + sort cost of B)

可以看出Sort的成本是Merge Join的主要构成部分。这样sort_area_size的大小将很大程度决定Merge Join的大小。同样如果A表或者B表已经经过排序的,那么Merge Join往往具有很好的性能。其不会走索引。

没有驱动表的概念,即时响应能力较差。

七.一般情况下最常见的5种问题

1. Statement not written for indexes 25%

2. Indexes are missing or inappropriate 16%

3. Use of single-column index merge 15%

4. Misuse of nested loop, sort merge, or hash join 12%

5. Misuse of IN, EXISTS, NOT IN, NOT EXISTS, or table joins 8%

不过在我们这里,最常见的问题是在第2条,第3条,第4条。

1. Statement not written for indexes

类似于这样的:

SELECT account_name, trans_date, amount

FROM transaction

WHERE SUBSTR(account_name,1,7) = ' CAPITAL';

WHERE account_name LIKE 'CAPITAL%';

Account_date 日期

To_char(Account_date,’YYYY-MM-DD:HH24:MI:SS’)=’200508XXX’;

Account_date=to_date(‘200508….’,’yyyy-mm-dd);

2.Indexes are missing or inappropriate

例如REP_C021中有这样一句:

select SUBSIDIARYID,260,'    300电话卡',

sum(decode(feetype, 1, ceil(duration / 60))) +

sum(decode(feetype, 0, ceil(duration / 60))),

sum(decode(feetype, 1, ceil(duration / 60))),

sum(decode(feetype, 0, ceil(duration / 60))),0

from cardsusage200508 a, service b

where a.caller = b.servicecode and

(b.property = i_property or i_property is null) and

a.cdrtype = 102

group by SUBSIDIARYID, 260, '    300电话卡';

Execution Plan

----------------------------------------------------------

0      SELECT STATEMENT Optimizer=RULE

1    0   SORT (GROUP BY)

2    1     NESTED LOOPS

3    2       TABLE ACCESS (FULL) OF 'CARDSUSAGE200508'

4    2       TABLE ACCESS (BY INDEX ROWID) OF 'SERVICE'

5    4         INDEX (UNIQUE SCAN) OF 'SERVICE_CODE'

我们取其中的select语句进行调优。在调整之前,原select语句需要6分钟左右。

12:19:20 SQL> select cdrtype,count(*) from cardsusage200508

12:20:12   2  group by cdrtype;

CDRT   COUNT(*)

---- ----------

102         637

106     1973757

107     2390097

112       46016

113          20

针对cardsuage200508表格的特性,我们在CDRTYPE字段上建立一个位图索引CARDSUSAGE_CDRTYPE_BTIDX。

将SQL语句加上以下Hint:

select /*+  INDEX(A, CARDSUSAGE_CDRTYPE_BTIDX)*/

SUBSIDIARYID,260,'    300电话卡',

sum(decode(feetype, 1, ceil(duration / 60))) +

sum(decode(feetype, 0, ceil(duration / 60))),

sum(decode(feetype, 1, ceil(duration / 60))),

sum(decode(feetype, 0, ceil(duration / 60))),0

from cardsusage200508  a, service b

where a.caller = b.servicecode and

(b.property = i_property or i_property is null) and

a.cdrtype = 102

group by SUBSIDIARYID, 260, '    300电话卡';

这样调整后,只需要几秒钟即可出来。

3.  Use of single-column index merge

复合索引有的时候比单列索引效率更高。根据where子句中的具体情况,有 时可以建立复合索引。例如:

select a.AccountNum,a.ChargeID,a.Total,b.ItemID,

b.Amount,c.billingcycle

from charge_bill a, chargedetail_bill b, Account c

where a.AccountNum > 1 and a.AccountNum <= 1969618 and

a.status = '0' and a.InvoiceID is null and c.paymentmethod != '7' and

a.Total > 0 and a.AccountNum = c.AccountNum and

a.ChargeID = b.ChargeID

order by a.AccountNum, a.ChargeID, b.ItemID;

这样的SQL语句执行需要3分27秒。

我们做了以下优化:

在charge_bill表格的accountnum,status,total,invoiceid列上建立一个复合索引。这样上述SQL语句需要40秒左右。

Resume Service过程中有这么一句:

SELECT NVL(SUM(A.FEE),0)

FROM ACCOUNTBALANCE A,INVOICE B

WHERE A.OBJECTID = B.INVOICEID  AND A.ACCOUNTNUM = :b1

AND B.BILLINGBEGINDATE 

该语句需要执行大概72000次。整个过程执行大概需要100分钟左右。

将:b1以具体的值代替,这条SQL语句执行很快,大概0.1秒左右。

我们做了以下优化:

在invoiceid,billingbegindate列上创建了一个索引idx_invoice_hc。

将上述SQL语句改成:

select /*+ use_nl(a,b) index(b,IDX_INVOICE_HC)*/  nvl(sum(a.fee),0)

from accountbalance a,invoice b

where a.objectid=b.invoiceid  and a.accountnum=m_accountnum

and b.billingbegindate

这样一来,该过程的执行时间快的时候大概在10分钟左右,慢的时候(IO异常紧张的时)大概在30分钟左右。

4. Misuse of nested loop, sort merge, or hash join

表格之间的连接方式和连接顺序都将极大的影响SQL语句的性能。这种问 题在平时最常见。ORACLE在处理5张或5张以上的表格的连接时候,很容 易出问题。一般情况下,谨记前面表格之间的连接原则,即可以处理此类问 题。

例如:

select b.SUBSIDIARYID,

c.paymentmethod || ':' || nvl(subscribertype, '9999999'),

'gsm',count(*),sum(decode(untelLOCALCHARGE,

0,decode(duration,0,1,

decode(sign(duration - 1800),

1, 2 + trunc((duration - 1201) / 600),

2)), trunc((duration + 599) / 600))),

sum(nvl(GSMCHARGE, 0)),nvl(property, '0'),

SUM(trunc((duration + 599) / 600))

from  rt_untelecomusage a ,service b, account c

where a.starttime >

to_date(to_char(add_months(to_date('200508 ', 'YYYYMM'), -1),

'YYYYMM') || '20235959',

'YYYYMMDDHH24MISS') and

a.starttime 

gsmcharge > 0 and a.serviceid = b.serviceid and

b.accountnum = c.accountnum

group by b.SUBSIDIARYID,

c.paymentmethod || ':' || nvl(subscribertype, '9999999'),

'gsm',nvl(property, '0');

该语句原先需要4,5个小时左右。

优化:

alter session set hash_area_size=300000000;

select /*+ use_hash(b,c) ordered NO_EXPAND full(a) use_hash(a)*/  b.SUBSIDIARYID,c.paymentmethod || ':' || nvl(subscribertype, '9999999'),

'gsm',count(*), sum(decode(untelLOCALCHARGE,0,decode(duration,0, 1,

decode(sign(duration - 1800), 1,2 + trunc((duration - 1201) / 600), 2)),

trunc((duration + 599) / 600))),sum(nvl(GSMCHARGE, 0)),

nvl(property, '0'),SUM(trunc((duration + 599) / 600))

from service b, account c,untelecomusage_200508  a

where a.starttime >

to_date(to_char(add_months(to_date('200508', 'YYYYMM'), -1),

'YYYYMM') || '20235959',

'YYYYMMDDHH24MISS') and

a.starttime 

gsmcharge > 0 and a.serviceid = b.serviceid and

b.accountnum = c.accountnum

group by b.SUBSIDIARYID,c.paymentmethod || ':' || nvl(subscribertype, '9999999'),'gsm',nvl(property, '0');

这样优化后,只需要40分钟左右即可。

八.案例

1. 循环Update操作

以下过程太慢了, 半个小时连5000条记录都未处理,总 共有7万多条。

declare

cursor c1 is

select caller

from zxx_sms_step where chargemonth=200504 and fee is null;

icnt number;

begin

icnt:=0;

for m_c1 in c1 loop

update zxx_sms_step a set fee=

(select nvl(sum(pascharge),0) from ipasimport_200504 where caller=m_c1.caller and pastag in (1243,1251))

where caller=m_c1.caller and chargemonth=200504;

icnt:=icnt+1;

if icnt=500 then

exit;

end if;

end loop;

end;

这样的SQL语句,建议先将update中的子查询生成一张中间表,然后再update。

alter session set hash_area_size=400000000 ;

select /*+use_hash(a,b)*/ b.caller,nvl(sum(a.pascharge),0) from ipasimport_200504 a,zxx_sms_step b

where b.chargemonth=200504 and b.fee is null

and a.caller=b.caller and a.pastag in (1243,1251)

group by b.caller;

这样10分钟不到就可产生中间表,然后再update只需几分钟即可。

2. 部分表格未做统计信息分析

网通OA系统自从oracle服务器从pc服务器上迁到小型机上后,其CPU利用率经常冲到很高。而其中每一个进程在某个瞬间将占用40%左右的CPU。这些进程都是通过jdbc thin client 连过来的。

通过抓取其sql_text,发现以下两条SQL语句不正常。

1.

SQL>  select D.flow_inid,D.step_inco,D.deal_man,D.agen_men,D.time_set,D.peri_man,

2   S2.fsub_set,S2.fsub_id,F.mtbl_stru,F.doc_name,F.svr_name

3   from deal_info D,step_inst S1,step_def S2,flow_inst F

4   where D.step_inco=S1.step_inco and S1.flow_id=S2.flow_id

5   and S1.step_code=S2.step_code and S1.flow_inid=F.flow_inid and D.step_type=5

6   and D.fsub_flag is not null and D.fsub_flag=1 and rownum<=1;

其执行计划和统计信息如下:

Execution Plan

----------------------------------------------------------

0      SELECT STATEMENT Optimizer=CHOOSE (Cost=22 Card=1 Bytes=1077)

1    0   COUNT (STOPKEY)

2    1     NESTED LOOPS (Cost=22 Card=1 Bytes=1077)

3    2       NESTED LOOPS (Cost=21 Card=1 Bytes=360)

4    3         NESTED LOOPS (Cost=20 Card=1 Bytes=150)

5    4           TABLE ACCESS (FULL) OF 'STEP_INST' (Cost=2 Card=9  Bytes=153)

6    4           TABLE ACCESS (BY INDEX ROWID) OF 'DEAL_INFO' (Cost=2 Card=1 Bytes=133)

7    6             INDEX (RANGE SCAN) OF 'DEAL_INFO_STEP_INCO' (NON-UNIQUE) (Cost=2

8    3         TABLE ACCESS (BY INDEX ROWID) OF 'FLOW_INST' (Cost=1 Card=1 Bytes=210)

9    8           INDEX (UNIQUE SCAN) OF 'PK_FLOW_INST' (UNIQUE)

10    2       TABLE ACCESS (BY INDEX ROWID) OF 'STEP_DEF' (Cost=1 Card=1 Bytes=717)

11   10         INDEX (UNIQUE SCAN) OF 'STEP_DEF_PK11119358638593' (UNIQUE)

Statistics

----------------------------------------------------------

0  recursive calls

0  db block gets

270626  consistent gets

273  physical reads

0  redo size

1079  bytes sent via SQL*Net to client

655  bytes received via SQL*Net from client

2  SQL*Net roundtrips to/from client

0  sorts (memory)

0  sorts (disk)

0  rows processed

这条SQL语句执行的时间也不长,就几秒钟,但是我们看到consistent gets很高有27万多,这个操作就是消耗CPU的祸首。从执行计划来看,其执行计划显然不可理,问题出在表格的连接顺序上面,应该是deal_info表格做为驱动表先访问。

检查这些表格的统计分析,发现step_def表格未做分析,对该表格做统计信息分析,并对deal_info表做柱状图分析后:

analyze table deal_info compute statistics for all indexed columns;

其执行计划正是我们所想要的,同时consistent gets也只有200左右,该操作所消耗的CPU也下降到了1%。

2.表格的柱状图信息没有分析:

SELECT SO.SO_NBR, so_type.name,STATUS.STS_WORDS, SO.REMARKS, SO.CHECK_TYPE,CTRL_ASGN.DISPATCHED_DATE,

CTRL_ASGN.PRE_ALARM_DATE, CTRL_ASGN.ALARM_DATE

from SO,SO_HANDLE, CTRL_ASGN,so_type,status

WHERE SO_HANDLE.SO_NBR=SO.SO_NBR AND SO.SO_NBR=CTRL_ASGN.SO_NBR

AND SO_HANDLE.HANDLE_TYPE_ID=1017

and so.so_type_id=so_type.so_type_id and so.PRIORITY=status.sts_id and status.table_name='SO'

AND STATUS.column_name ='PRIORITY' AND SO_HANDLE.WORK_AREA_ID= 300101

AND SO.STATE= 'B' AND SO.HALT ='N'

AND CTRL_ASGN.STATE = 'B'

AND CTRL_ASGN.STS = 'D';

该SQL语句执行时间要2分钟左右。

执行计划如下:

Execution Plan

----------------------------------------------------------

0      SELECT STATEMENT Optimizer=HINT: RULE

1    0   NESTED LOOPS

2    1     NESTED LOOPS

3    2       NESTED LOOPS

4    3         NESTED LOOPS

5    4           TABLE ACCESS (BY INDEX ROWID) OF 'STATUS'

6    5             INDEX (RANGE SCAN) OF 'PK_STATUS' (UNIQUE)

7    4           TABLE ACCESS (BY INDEX ROWID) OF 'CTRL_ASGN'

8    7             INDEX (RANGE SCAN) OF 'CTRL_ASGN_0002'

9    3         TABLE ACCESS (BY INDEX ROWID) OF 'SO'

10    9           INDEX (UNIQUE SCAN) OF 'PK_SO' (UNIQUE)

11    2       TABLE ACCESS (BY INDEX ROWID) OF 'SO_TYPE'

12   11         INDEX (UNIQUE SCAN) OF 'PK_SO_TYPE' (UNIQUE)

13    1     TABLE ACCESS (BY INDEX ROWID) OF 'SO_HANDLE'

14   13       INDEX (RANGE SCAN) OF 'PK_SO_HANDLE' (UNIQUE)

我们收集表格信息和结果集的信息:

SQL> select count(*) from CTRL_ASGN;

COUNT(*)

----------

1832469

SQL> select count(*) from status;

COUNT(*)

----------

1718

SQL> select count(*) from so;

COUNT(*)

----------

300296

SQL> select count(*) from so_type;

COUNT(*)

----------

265

SQL> select count(*) from so_handle;

COUNT(*)

----------

1296263

select count(*) from ctrl_asgn where  CTRL_ASGN.STATE = 'B' AND CTRL_ASGN.STS = 'D';

COUNT(*)

----------

331490

select count(*) from so where SO.STATE= 'B' AND SO.HALT ='N';

COUNT(*)

----------

361

select count(*) from so_handle where SO_HANDLE.HANDLE_TYPE_ID=1017 and SO_HANDLE.WORK_AREA_ID= 300101;

COUNT(*)

----------

30086

通过对上面这些信息进行分析,我们可以发现这个问题也可以归结为表格之间的连接顺序上面。通过将SO表做柱状图分析后,该SQL语句只需1秒钟即可出来。

Analyze table so compute statistics for all indexed columns;

执行计划变成如下:

Execution Plan

----------------------------------------------------------

0      SELECT STATEMENT Optimizer=CHOOSE (Cost=273 Card=32 Bytes=3936)

1    0   NESTED LOOPS (Cost=273 Card=32 Bytes=3936)

2    1     NESTED LOOPS (Cost=153 Card=30 Bytes=2730)

3    2       HASH JOIN (Cost=33 Card=30 Bytes=2130)

4    3         NESTED LOOPS (Cost=31 Card=30 Bytes=1620)

5    4           TABLE ACCESS (FULL) OF 'STATUS' (Cost=2 Card=1 Bytes=25)

6    4           TABLE ACCESS (BY INDEX ROWID) OF 'SO' (Cost=29 Card=59 Bytes=1711)

7    6             INDEX (RANGE SCAN) OF 'SO_0003' (NON-UNIQUE) (Cost=2 Card=59)

8    3         TABLE ACCESS (FULL) OF 'SO_TYPE' (Cost=1 Card=128 Bytes=2176)

9    2       TABLE ACCESS (BY INDEX ROWID) OF 'SO_HANDLE' (Cost=4 Card=280 Bytes=5600)

10    9         INDEX (RANGE SCAN) OF 'PK_SO_HANDLE' (UNIQUE) (Cost=3 Card=280)

11    1     TABLE ACCESS (BY INDEX ROWID) OF 'CTRL_ASGN' (Cost=4 Card=13620 Bytes=435840)

12   11       INDEX (RANGE SCAN) OF 'CTRL_ASGN_0003' (NON-UNIQUE) (Cost=2 Card=13620)

3. Not exists的使用

--停机保号用户数(除欠费)

select 'XJ'||1||'180','停机保号用户数',count(distinct serviceid),1,'200509',groupid from cbq_lch_usage0

where subsidiaryid=1 and subid<>'02'  and subid<>'06' and status='7' and

serviceid not in (select serviceorderid from cbq_qf_usage1  where status<>'3' and status <> '8')

group by 'XJ'||1||'180','停机保号用户数',1,'200509',groupid ;

Execution Plan

----------------------------------------------------------

0      SELECT STATEMENT Optimizer=RULE

1    0   SORT (GROUP BY)

2    1     FILTER

3    2       TABLE ACCESS (FULL) OF 'CBQ_LCH_USAGE0'

4    2       TABLE ACCESS (FULL) OF 'CBQ_QF_USAGE1'

Elapsed: 13:48:26.85

调整:

not in 改成not exists

create index idx_serviceorderid on cbq_qf_usage1(serviceorderid) nologging;

select 'XJ'||1||'180','停机保号用户数',count(distinct serviceid),1,'200509',a.groupid

from cbq_lch_usage0 a

where a.subsidiaryid=1 and a.subid<>'02'  and a.subid<>'06' and a.status='7'

and not exists(select 1 from cbq_qf_usage1 b where status<>'3' and status<>'8' and a.serviceid=b.serviceorderid)

group by 'XJ'||1||'180','停机保号用户数',1,'200509',a.groupid;

Execution Plan

----------------------------------------------------------

0      SELECT STATEMENT Optimizer=RULE

1    0   SORT (GROUP BY)

2    1     FILTER

3    2       TABLE ACCESS (FULL) OF 'CBQ_LCH_USAGE0'

4    2       TABLE ACCESS (BY INDEX) OF 'CBQ_QF_USAGE1'

5    4         INDEX (RANGE SCAN) OF 'IDX_SERVICEORDERID'

Elapsed: 00:00:01.36

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值