sklearn学习——随机森林分类和回归

sklearn学习——随机森林分类和回归

1 分类

class sklearn.ensemble.RandomForestClassifier (n_estimators=’10’, criterion=’gini’, max_depth=None,
min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=’auto’,
max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False,
n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None)

1.1 参数介绍

  • criterion: 不纯度的衡量指标,有基尼系数和信息熵两种选择
  • max_depth: 树的最大深度,超过最大深度的树枝都会被剪掉
  • min_samples_leaf: 一个节点在分枝后的每个子节点都必须包含至少min_samples_leaf个训练样本,否则分枝就不会发生
  • min_samples_split: 一个节点必须要包含至少min_samples_split个训练样本,这个节点才允许被分 枝,否则分枝就不会发生
  • max_features max_features: 限制分枝时考虑的特征个数,超过限制个数的特征都会被舍弃, 默认值为总特征个数开平方取整
  • min_impurity_decrease: 限制信息增益的大小,信息增益小于设定数值的分枝不会发生
  • n_estimators: n_estimators越大,模型的效果往往越好。但是相应的,任何模型都有决策边界,n_estimators达到一定的程度之后,随机森林的精确性往往不在上升或开始波动。
  • random_state: RandomStateIf int,random_state是随机数生成器使用的种子; 如果是RandomState实例,random_state就是随机数生成器; 如果为None,则随机数生成器是np.random使用的RandomState实例。
  • bootstrap: bootstrap参数默认True,代表采用这种有放回的随机抽样技术
  • oob_score: 在使用随机森林时,我们可以不划分测试集和训练集,只需要用袋外数据来测试我们的模型即可。

1.2 代码

# 导入我们需要的包
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score
import matplotlib.pyplot as plt
# 导入需要的数据集
wine = load_wine()
#print(wine.data)
#print(wine.target)
#print(wine)

'''
# 读取数据集
path = '333.csv'
data = np.loadtxt(path, dtype=float, delimiter=',')
x, y = np.split(data, indices_or_sections=(4,), axis=1)  # x为数据,y为标签
'''

# 数据分成训练和测试
Xtrain, Xtest, Ytrain, Ytest = train_test_split(wine.data, wine.target, test_size=0.3)

# 建模,   rfc:随机森林
rfc = RandomForestClassifier(random_state=0)
rfc = rfc.fit(Xtrain, Ytrain)

'''
# 无需划分训练集和测试集
rfc = RandomForestClassifier(n_estimators=25,oob_score=True)
rfc = rfc.fit(wine.data,wine.target)
'''

# 测试精度
score_r = rfc.score(Xtest, Ytest)
print("Random Forest:{}".format(score_r))


print(rfc.feature_importances_)          # 返回每个属性得重要性

# 返回每个样本被分到叶节点的索引
rfc_c = rfc.apply(Xtest)
print(rfc_c)

# 返回测试数据预测分类结果
rfc_pre = rfc.predict(Xtest)
print(rfc_pre)

# 返回每个测试样本对应的被分到每一类标签的概率,标签有几个分类就返回几个概率。
rfc_pre_pro = rfc.predict_proba(Xtest)
print(rfc_pre_pro)

'''
# 交叉验证:是数据集划分为n分,依次取每一份做测试集,每n-1份做训练集,多次训练模型以观测模型稳定性的方法
from sklearn.model_selection import cross_val_score
import matplotlib.pyplot as plt

rfc = RandomForestClassifier(n_estimators=25)
rfc_s = cross_val_score(rfc, wine.data, wine.target, cv=10)
plt.plot(range(1, 11), rfc_s, label =  "RandomForest")
plt.legend()
plt.show()
'''

'''
#  n_estimators的学习曲线
superpa = []
for i in range(200):
    rfc = RandomForestClassifier(n_estimators=i+1, n_jobs=-1)
    rfc_s = cross_val_score(rfc, wine.data, wine.target, cv=10).mean()
    superpa.append(rfc_s)
print(max(superpa), superpa.index(max(superpa)))
plt.figure(figsize=[20, 5])
plt.plot(range(1, 201), superpa)
plt.show()
'''

2 回归

class sklearn.ensemble.RandomForestRegressor (n_estimators=’warn’, criterion=’mse’, max_depth=None,
min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=’auto’,
max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False,
n_jobs=None, random_state=None, verbose=0, warm_start=False)

# 导入我们需要的包
from sklearn.datasets import load_boston
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
import sklearn

# 导入需要的数据集
boston = load_boston()
#print(load_boston)

# 数据分成训练和测试
Xtrain, Xtest, Ytrain, Ytest = train_test_split(boston.data, boston.target, test_size=0.3)

# 建模
rfr = RandomForestRegressor(n_estimators=100, random_state=0)
rfr.fit(Xtrain, Ytrain)

# 计算回归模型的准确率
print("训练集:", rfr.score(Xtrain, Ytrain))# 训练的准确率
print("测试集:", rfr.score(Xtest, Ytest))  # 测试的准确率

# 回归预测值
print("测试数据:", Xtest)
print("回归预测值:", rfr.predict(Xtest))


# 交叉验证
rfr_s = cross_val_score(rfr, boston.data, boston.target, cv=10,
                 # scoring = "neg_mean_squared_error"
                )
print(rfr_s)
# sorted(sklearn.metrics.SCORERS.keys())   # 对应的关键字
  • 3
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
随机森林是一种集成学习方法,它通过构建多个决策树来提高预测准确性。下面是sklearn随机森林的一些基本步骤、参数、属性和接口: 1. 基本步骤: 1.1 参数n_estimators:指定森林中树的数量。 1.2 建立森林:使用RandomForestClassifier()函数建立随机森林。 1.3 n_estimators的学习曲线:使用validation_curve()函数绘制n_estimators的学习曲线。 2. 重要的参数、属性、接口: 2.1 random_state:在划分训练集和测试集的类train_test_split、构建决策树的函数、构建随机森林时都可以使用该参数,它可以保证每次运行时得到的结果都是一样的。 2.2 estimators_:查看森林中每棵树的状况。 2.3 bootstrap & oob_score:bootstrap参数控制是否进行有放回的随机抽样,oob_score参数控制是否使用袋外样本来评估模型的准确性。 2.4 fit & score:fit()函数用于拟合模型,score()函数用于评估模型的准确性。 2.5 feature_importances_:查看每个特征的重要性。 2.6 apply:返回每个样本所在的叶子节点的索引。 2.7 predict:对新数据进行预测。 2.8 predict_proba:返回每个类别的概率。 3. 随机森林回归器: 3.1 重要的参数、属性、接口:与分类器类似,但是需要使用RandomForestRegressor()函数来建立随机森林回归器。 4. 机器学习中调参的基本思想: 泛化误差:模型在新数据上的误差。 标签和特征:标签是我们要预测的变量,特征是我们用来预测标签的变量。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值