香农编码的gui编码_香农编码

香农编码

概念:

香农编码是是采用信源符号的累计概率分布函数来分配字码的。香农编码是根据香农第一定理直接得出的,指出了平均码长与信息之间的关系,同时也指出了可以通过编码使平均码长达到极限值。香农第一定理是将原始信源符号转化为新的码符号,使码符号尽量服从等概分布,从而每个码符号所携带的信息量达到最大,进而可以用尽量少的码符号传输信源信息。

香农编码属于不等长编码,通常将经常出现的消息变成短码,不经常出现的消息编成长码,从而提高通信效率。 香农编码严格意义上来说不是最佳码,它是采用信源符号的累计概率分布函数来分配码字。

编码步骤如下:

(1)将信源符号按概率从大到小顺序排列。

(2)计算第i个符号对应的码字的码长(取整);

(3) 计算第i个符号的累加概率 ;

(4)将累加概率变换成二进制小数,取小数点后 位数作为第i个符号的码字。

可以看出,编码所得的码字,没有相同的,所以是非奇异码,也没有一个码字是其他码字的前缀,所以是即时码,也是唯一可译码。

特点:

香农编码的效率不高,实用性不大,但对其他编码方法有很好的理论指导意义。一般情况下,按照香农编码方法编出来的码,其平均码长不是最短的,即不是紧致码(最佳码)。只有当信源符号的概率分布使不等式左边的等号成立时,编码效率才达到最高。

香农编码

1.根据步骤截取核心代码:

ab24772420da6f1f08f23c12faaa3f3d.png将信源符号按概率从大到小顺序排列

ac53fb102245ec61df23c42b4a2ee753.png计算符号的累加概率,取小数点后特定位数作为第i个符号的码字

bc1ea2dc866e918dc1e81a7985a45074.png将累加概率变换成二进制小数

2.验证编码效率是100%的情况(0.5,0.25,0.125,0.125)

d6612cb4be252d3305b8d24dc68493de.png

3.事例1(0.25,0.25,0.2,0.15,0.1,0.05)

e153ca4c285a652c68c7e96ade56006a.png

4.事例2(0.20,0.19,0.18,0.17,0.15,0.10,0.01)做对比(平均码长,编码效率)

ba962971f0cf576e2f3a5b20749c79bf.png

代码:

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

using namespace std;

struct Node

{

int num;

double p,pa;

int L;

int x[100];

};

Node box[20];

int M;

double H,L,K;

int exit1,exit2;

void draw()

{

int i,j,k,posx,posy;

cleardevice();

setlinecolor(BLACK);

settextcolor(BLACK);

for(i=1;i<=M;i++){

posx=10;

posy=M*50;

k=50;

for(j=0;j

if(box[i].x[j]==1){

line(posx,posy,posx+k,posy-k);

outtextxy(posx+k/2,posy-k/2+2, _T("1"));

posx+=k;

posy-=k;

}

else{

line(posx,posy,posx+k,posy);

outtextxy(posx+k/2-4,posy+1, _T("0"));

posx+=k;

}

k/=1.05;

}

}

}

void initialization()

{

int i,j,k;

initgraph(501,550,SHOWCONSOLE);

setbkcolor(WHITE);

cleardevice();

M=6;

box[0].p=0;

box[1].p=0.25;

box[2].p=0.25;

box[3].p=0.20;

box[4].p=0.15;

box[5].p=0.1;

box[6].p=0.05;

}

void carry()

{

int i,j,k;

initialization();

exit1=0;

while(exit1==0){

for(i=0;i<=M;i++){

box[i].pa=0;

}

for(i=1;i<=M;i++){

box[i].pa=box[i-1].pa+box[i-1].p;

box[i].L=0;

while(box[i].L

box[i].L++;

}

}

H=0;

for(i=1;i<=M;i++){

H-=box[i].p*log(box[i].p)/log(2);

}

L=0;

for(i=1;i<=M;i++){

L+=box[i].p*box[i].L;

}

K=0;

for(i=1;i<=M;i++){

K+=pow(0.5,box[i].L);

}

for(i=1;i<=M;i++){

cout<

cout<

cout<

cout<

for(j=0;j

box[i].pa*=2;

if(box[i].pa>=1){

box[i].x[j]=1;

box[i].pa-=1;

}

else{

box[i].x[j]=0;

}

cout<

}

cout<

}

cout<

cout<

cout<

cout<

if(K<=1)cout<

else cout<

draw();

cout<

_getch();

system("cls");

cout<

M=0;

while(M<3||M>10){

cin>>M;

}

cout<

for(i=1;i<=M;i++){

cout<

box[i].p=0;

while(box[i].p<=0||box[i].p>=1){

cin>>box[i].p;

}

}

for(i=0;i

for(j=1;j

if(box[j].p

box[11].p=box[j+1].p;

box[j+1].p=box[j].p;

box[j].p=box[11].p;

}

}

}

system("cls");

}

}

int main()

{

carry();

}

演示视频:

500a38b5e598aa99ebecdfdda10a89ad.gif

接下来这些是信息论的大作业,三种无失真编码,只编了二元码,我要稍微详细说说过程,一般编之前肯定是找算法,概念,再在纸上像大纲一样从头到尾列出实现的或详或略的代码。

香农编码作为最简单的是可以根据老师ppt给的算法直接完成的,包括:概率排序,累加概率,由概率算码字长度,由累加概率编码即可,清晰明白。

如果编多(m)元码,我猜测,由概率算码字长度这一步要将log2为底改成logm为底,由累加概率编码这一步要将乘2取整再剪整数部分改为乘m取整再剪整数部分。

算术编码作为限失真编码,我感觉很像香农编码,如果符号序列因为各种原因未出现某符号,两者才会有区别。

ppt:

abb3875470495b079405287ee849f99b.png

6373c2cebc810f4aca25e24a949fd90f.png

7a00dd366234210e9011d66b8295d209.png

658bcb72d13bf88c0c9c85000b7da9ef.png

79040b92e7fe87fa408d3dbc69736ebe.png

8a40591fab294d03de8ef259f1e58381.png

dbd06d610ea8a3da4277ad2ea3f01fc3.png

阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
算术编码是一种无损压缩算法,可以将任意长度的数据流压缩为一个较短的编码。而编码是一种基于概率的编码方法,可以使得出现概率较高的符号用较短的编码表示,出现概率较低的符号用较长的编码表示。 以下是算术编码编码的MATLAB实现代码: 算术编码: ```matlab function [code,prob] = arith_encode(source,prob) % 初始化概率表 if nargin < 2 prob = ones(1,256)/256; end % 计算累积概率 cumprob = cumsum(prob); % 计算区间范围 low = 0; range = 1; for i = 1:length(source) symbol = source(i); % 更新区间范围 newlow = low + range*cumprob(symbol); newrange = range*prob(symbol); % 缩小区间范围 low = newlow; range = newrange; end % 输出编码和最终概率表 code = floor(low*2^32); prob(source(end)) = prob(source(end)) + 1; prob = prob/sum(prob); end ``` 编码: ```matlab function [code,len] = shannon_encode(source) % 计算概率表 prob = histcounts(source,0:256)/length(source); % 计算累积概率 cumprob = cumsum(prob); % 初始化编码表 code = cell(1,256); for i = 1:256 % 计算编码 if prob(i) > 0 len = ceil(-log2(prob(i))); code{i} = sprintf('%%0%dd',len); code{i} = sprintf(code{i},dec2bin(cumprob(i)*2^len-1,len)); end end % 输出编码编码长度 len = cellfun(@length,code); end ``` 这两个函数分别实现了算术编码编码。你可以将需要压缩的数据传入这两个函数,得到对应的编码编码长度。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

疯狂的Java说书酱

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值